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Let R be a regular local ring over a field k of characteristic different from two and let S = R/I 
be a codimension four Gorenstein quotient with the same embedding dimension e as R. The Poin- 

cart series of S is defined to be P,(z) = 1 dim, Toris(k, k)z’= 1 dim, Extk(k, k)z’. We show that 

f,(z) = (1 + #/p(z), where p(z) is a polynomial of one of four possible forms (explicitly given). 

As a corollary it follows that either S is a complete intersection or there exists a complete intersec- 

tion I?= R/(a,,a,) with a, EI such that Zi+.S is a Golod homomorphism. The structure of the 

homotopy Lie algebra of S, n*(S), can then be elucidated: it is either finite-dimensional or the 

extension of the finite-dimensional Lie algebra n*(R) by a free Lie algebra. 

Introduction 

Let R be a regular local ring over a field k not of characteristic two. Let S= R/Z 

be a codimension four Gorenstein quotient of R such that R and S have the same 

embedding dimension e,. The Poincare series of the local ring S is 

Ps(z) = c dim, Torf(k, k)z’= c dim, Exti(k, k)z’. 
/r” 120 

After some preliminaries in Section 1, we compute this series in Section 2. We have 

the following result (Theorem 2.2, Corollary 2.3). 

Theorem A. Let S be as above. Then the Poincart! series of S is given by P,(z) = 

(1 f z)‘~/~(z), where p(z) is a polynomial of one of four possible forms (explicitly 

given). 
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The Poincare series is the generating series of the Yoneda Ext-algebra of 

S,Ext,@,k). This is a Hopf algebra and is the enveloping algebra of a graded Lie 

algebra n*(S), the homotopy Lie algebra of S; i.e. U(7z*(S)) =Ext,*(k,k). The 

dimension of z’(S) is el and the dimension of n’(S) is the minimal number of 

generators of 1. If S is a complete intersection, then rrz3(S) = 0; otherwise n*(S) is 

infinite-dimensional. In Section 3 we use Theorem A to obtain the structure of 

n*(S), with the following results (Theorem 3.1, Corollary 3.2). 

Theorem B. Let S be as above. Then either S is a complete intersection or there exists 
a complete intersection Z? = R/(a,, a*) with ai E Z (allowing the possibility a, = a2) 
such that R--S is a Golod epimorphism. 

Corollary C. Let S and Z? be as in Theorem B. Then either n*(S) is finite- 
dimensional or X*(S) is the extension of the finite-dimensional Lie algebra rt*(Z?) 
by a free Lie algebra. 

Corollary D. Let S be as above and M be a finitely generated S-module. Then the 
PoincarP series of M 

Pp(z) = c dimk(Torf(M, k))z’ 
120 

is a rational function. 

If S is not a complete intersection, then by Corollary C the finitistic global dimen- 

sion of Ext,*(k,k) is at most three and the i-dimension of Ext;(k, k) is one (see 

Roos [23]). Further results concerning the deviations of S are given in Section 3. 

The main tool used to prove that Ps(z) is rational is Avramov’s theorem [3, Cor- 

ollary 3.31, which converts the calculation of Ps(z) to a calculation of the Poincare 

series of ,4 = TorR(S, k), provided the minimal resolution of S by free R-modules is 

a DG algebra. In [15,17] Kustin and Miller proved that this hypothesis holds in the 

immediate cases of interest (all codimension four Gorenstein algebras, and certain 

higher codimension Gorenstein algebras). Just recently in [16] they have shown that 

in the codimension four case the algebra A has one of exactly four possible forms. 

The proof of Theorem B is then modeled on that of Jacobsson [13], who proved 

the same result in the case that S is a codimension three quotient of R. 

1. Preliminary results 

All rings and algebras are associative and have a unit element. Fix a field k of 

characteristic not two. A local ring is a commutative noetherian ring with a unique 

maximal ideal. A local ring over k is a local ring which has residue field k, and a 
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map of local rings over k is a commutative triangle 

The rest of the introductory material deals with graded algebras and modules; for 

more detail consult [9]. 

In this paper A will always denote a graded-commutative algebra. That is, 

A = BP”=0 Ai with a;a, = (- l)“ajai EA~+~ and a’= 0 if i is odd, for all ai EA; and 

aj EA/. We shall assume A, is itself a local ring over k. Hence every graded- 

commutative algebra that we consider comes equipped with an augmentation 

homomorphism E : A+k; the augmentation ideal Z(A) is defined to be ker(e) and 

always contains A+ = @p”=, Ai. S ometimes we impose the additional hypotheses 

that A be connected (i.e. A0 = k) or locally finite (i.e. dim A,< 00 for all i). If A4 is 

a graded A-module, then the trivial extension A KM of A by M is the graded 

algebra with underlying graded A-module ABM and multiplication given by 

(aI, m,)(a2, m2) = (ala,, alm2 + (- l)deg(az)deg(ml)a2ml). 

A DG-algebra is a graded-commutative algebra A with a differential 

d : A; +A;_ 1 satisfying the Leibniz rule d(a;aj) = (dai)aj + (- I)‘aidaj for a; E A; and 

aj E A,. A r-algebra is a graded commutative algebra with divided powers: for each 

element a in A of positive even degree, there is an associated sequence of elements 

{a(‘), a(‘), at2), . . . > satisfying a(‘) = 1, a(‘) = a, deg a(@ = k deg a, and a list of axioms, 

which we shall not need explicitly; see [9, Definition 1.7.11. Many of the graded- 

commutative algebras that we consider are automatically r-algebras. For example, 

if A = A,, or if A is an exterior algebra on a graded vector space all of whose 

elements have odd degree, or if A is the ‘trivial algebra’ k[x,, . . . , xn]/(xI, . . . , x,)~, 

then A is a r-algebra. If the field of rational numbers is contained in A, then A 

is a r-algebra with a @) = (1 /k!)ak. Similarly if Ai = 0 for i > 4 and 2 is a unit in A, 

then A is a r-algebra. If V is a finite-dimensional graded vector space over k with 

a homogeneous basis {u,, . . . , u,., w,, . . . , ws} where deg ui are odd and deg Wj are 

even, then E(V), the exterior algebra on V, is the r-algebra _4’(@:=, kuJ@ 

k(w,, . . . . w,), where A’ denotes the usual exterior algebra and k( ...) denotes the 

polynomial algebra with divided powers. 

A DC-algebra with divided powers that also satisfies the condition 
d#) = (da)a(k- r) is called a DGT-algebra. If {xi} is a collection of homogeneous 

elements in a DGr-algebra X (usually cycles representing basis elements of H(X)), 

then the divided polynomial algebra Y =X<{S;>; dSj =x,> is a new DGT-algebra. 

As an X-module Y is free with basis {,!$el) ... S::‘}; the grading is determined by 

setting deg Sj = 1 + deg x,. The differential and multiplication are natural extensions 

of those on X. (The process is known as Tate’s method of ‘killing cycles’.) Gulliksen 

[6; 9, Proposition 1.9.31 has proved that if R, m, k is a local ring, then the Tate 
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resolution (X, d) = R(T, , . . . > of k is a minimal resolution in the sense that 

dX c mX. By its construction X is a DGf -algebra. Jozefiak [14, Theorem 4.61 has 

extended Gulliksen’s method to show that if A is a Z-algebra, then the minimal 

homogeneous resolution X of k by free A-modules is a DGT-algebra. In this case 

dX c Z(A)X. 
We are ultimately concerned with the Poincare series of a local ring S, m, k. If M 

is a finitely generated S-module, then the Poincare’ series of M as an S-module is 

PF = f dim, To&M, k)z’ 
i=o 

(1.1) 

and the Poincare’series of S is Ps = Pl. In order to compute Ps we will often invoke 

Avramov’s theorem (here Theorem 1.7) and calculate PA, where A is a suitable 

chosen graded-commutative algebra. Defining the Poincare series of a graded 

algebra is a little tricky, so at the risk of pedantry we shall spell out the details. 

Let M and N be finitely generated graded modules over a graded-commutative 

algebra A. Then Tor:(M, N) is a graded A-module with qth homogeneous piece 

Tor&(M, N). In other words if 

X: . . . -+X,+X,+M+O 

is a resolution of A4 by free A-modules, then each X,OA N= C,(X,@, N)4 is a 

graded A-module and 

Tor$(M, N) = 
kerKX,ON),+(X,- l ON),1 
im[(X,+,ON),~(X,ON),l ’ 

Some authors (see for example Herzog and Steurich [ 11,121) consider a two-variable 

Poincare series: 

P,“(X, Y) = c dimk Tor,A,(M, k)XP Yq, 
Pa420 

where k=A/Z(A) via the augmentation. For us the Poincare series of the graded 

module A4 over A is the condensation to a single-variable series: 

PA” = i c dimk Toriq(A4, k) t’= P,“(z, z). 
i=o p+q=i 

(1.2) 

If S is local and M is a finitely generated S-module, then PF can be computed by 

(1. l), or equivalently by (1.2) if S and Mare treated as graded objects concentrated 

in degree zero. Occasionally for typographic reasons we shall write P(A, M) for PA” 
and P(A) for PA. We now offer a few examples of Poincare series for graded 

algebras. These examples, and the following propositions, are results that we will 

need in the sequel to calculate the Poincare series of a codimension four Gorenstein 

ring. They are, for the most part, analogs in the category of graded-commutative 

algebras for well-known results in the category of local algebras. 
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Example 1.1. (a) Let A = E(@:=, kui) where deg(oJ = 1 for i = 1, . . . , n. Observe that 

f(A)=A+. By 114, Theorem 5.21 the DGT-algebra A(S,, . . . . S,; &$= u;> is a 

minimal resolution of k by free A-modules. Thus TorA (k, k) = A(S1, . . . , S,) OA k is 

simply the homology of the complex 

The symbol S!” represents an element of Torfi(k,k) and the symbol S(‘)Sjl) 

represents an element of Tort2(k,k). It is clear that Pi’ =(l -z~)~. Notice that the 

coefficient of Z’ in PA is zero if i is odd. This can not happen for Poincare series 

of local rings. 

(b) If A4 is a graded A-module, then M[-d] is the graded module with M[-d]i = 

A4-d. Since Tor$(M[-d], k) = Tor&,(M, k) we see that 

p,M[-dl = zdp*M. (1.3) 

The following result is due to Gulliksen [7, Theorem 21; see also [3, Proposition 

9.11. 

Theorem 1.2. If A is a graded-commutative, locally finite, connected k-algebra and 
M is a finitely generated A-module, then Pi k ,,,., = (1 - zP,“)Pi’. 0 

Corollary 1.3. If A is the graded-commutative algebra k[X,, . . . , X,1/(X,, . . . , X,)2 

with degXi=e;>O, then Pi’= 1 -zC:,, 2’. 

Proof. The proof is by induction on n. If n = 0 the result is obvious. Let B= 

k[X,, . . . . X,, ]]/(X,, . . . , X, + 1)2 and suppose the result is true for 

A=k[X1 ,..., X,1/(X ,,..., X,)2. Let e=e,+, and M=k[-e]. We may identify M 
with the ideal (X, + r ) in B. Then B = A K M and by Theorem 1.2 and formula (1.3) 

we have 

P,-‘=(l -IPT)Pi’ =[l -~(zePA)]P~‘=P/;l-Ze+’ 

n+l 

=1-,x Ze,. 0 
,+I 

Notice that if ej =0 for all i, then Pi’ = 1 - nz, which agrees with the usual 
formula [5; 3, Lemma 6.61 

PA = (1 +zY 

I- i i r:ll z’+’ 
i=l ( ) 

for the Poincare series of the ungraded trivial algebra A = k[X,, . . . , X,]/ 

(X,, ...,X,)2* 
The next result has a long history. Let R, m, k be a zero-dimensional Gorenstein 
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local ring of embedding dimension greater than one. Let I? =R/soc(R), where 

sot(R) denotes 0 :R m, the socle of R. Gulliksen [7] found that 

(1.4) 

if R is actually a complete intersection. Levin [19, Theorem 3.111 found that the 

same formula holds if R has embedding dimension three. Levin and Avramov [20] 

and, independently, Rahbar-Rochandel [22] showed that (1.4) holds without any ex- 

tra hypotheses on R. In the graded case Avramov [3, Theorem 9.21 showed that if 

A=E(03=IkUi) with degui=l for i-1,2,3 andA=A/A,, then Pi1=Pj1-,$+3. 

Herzog and Steurich [l l] proved a similar result for certain cases in which A is a 

homology algebra. More generally, the graded analog of a zero-dimensional 

Gorenstein local ring is a Poincare duality algebra. A connected, graded- 

commutative, locally finite k-algebra A (over a field of characteristic different from 

two) is called a Poincare’ duality algebra of length g if Ai = 0 for i > g, A, = k, and 

the pairings Ai x Ag_i-+Ag given by multiplication are perfect for all i. We thank 

Avramov for the proof of the following graded version of (1.4). A statement of this 

result in topological terms appears as Theorem 7.5.5 in Avramov’s article in the col- 

lection Asterisque 113-l 14. 

Theorem 1.4. Let A be a Poincare’ duality r-algebra over k of length g. If 

dim,(A+/A<)?2 andA=A/A,, then Pjl=Pj’-zg+‘. 

Proof. If every element of A has even degree, then A is actually a commutative 

Gorenstein ring and the proof is similar to the original proof [20, Theorem 21 in the 

ungraded case. Since we have no need for this case in this paper, we offer no more 

detail. Henceforth, we may assume that A has a non-zero element of odd degree. 

Let w #O generate A, and t #0 be an element of A with the least possible odd 

degree. Since A is a Poincare duality algebra, there is a homogeneous element u in 

A+ with ut = w. We claim that uA+ = WA =A, and U* =O. If there is a 

homogeneous element u in A+ such that uu # 0 is not in A, then by duality there is 

another homogeneous element u’ in A+ such that UUU’= w. Since deg u+deg u’= 

deg t, one of deg u, deg IJ’ must be an odd integer strictly less than deg t, contradict- 

ing the choice of t. If u has odd degree, then u*=O because A is a graded- 

commutative algebra. If u has even degree, then w has odd degree, and deg(u*)# 
deg w. It follows from uA+ = WA that U* = 0. 

Consider the Tate resolution (X, d) of k over A. By its construction X is a DGT- 

algebra, and by Jozefiak and Gulliksen [6; 14, Theorem 4.71 X is minimal in the 

sense that dXcZ(A)X=A+X. Select XEX, such that dx=t in X,=A. Let 8= 

X@* A. We claim that 

Z(X) c uX+ d(tt). (1.5) 

(As usual Z denotes cycles of a complex, Zi = Zi for i 2 1, and .&,0(X) =1(A) = 

d(X,).) Let x’ represent a cycle K’ in Z+(X); that is, x’ is in X and dx’= wy for 



The PoincarP series of a codimension four Gorenstein ring is rational 261 

some y in X. Then 

dx’ = wy = uty = u(dx)y = d( uxy) f uxdy 

and since dy is in A +X and uA + = WA, we see that f uxdy = xwyl for some yi in X. 

The exact same reasoning shows that xwy, =x&y, = x(dx)uy, = d(uxC2)y, ) + xC2)udy, 
since X is a DGT-algebra. Continuing in this manner, we obtain 

dx’= d(uxy + uxC2)y, + a.. + uxCi)y._ ]) I 9 

the sum terminating when i(deg x) 1 deg x’. Since X is acyclic x’ is in uX+ d(X), 
which establishes (1.5). 

We may now apply [20, Lemma 2.11, which can be proved in the graded setting 

exactly as in the original ungraded case. The result is: 

Lemma. Let A be a connected, graded-commutative k-algebra and U a DGT- 

algebra such that 
(a) each Ui is a free A-module and U, = A, 
(b) dUcA,U and dU, =A+, 
(c) there is a graded submodule M c A + U such that M2 = 0 and z(U) c M-t dU. 

Then the minimal resolution of k has the form Y= UOA T(F) where F is a free A- 
module satisfying FQA kzL?(U)[-1] and T(F) is the tensor algebra of F over 
s. 0 

We apply the lemma with U=fz and M= uX, concluding that x@,- T(F) is a 

minimal resolution of k by free A-modules, where 

(Fr @A k)a E Ht., _ , (X), z Tori_ ,,(A, k) for all p > 2 and q 2 0. 

It is immediate that 

PA=PA(l -z(E$- 1)))‘. (1.6) 

Using the exact sequence 

O+k[-g]=wA+A+A+O 

together with Tor$@i, k) G Tor$_ Iq(wA, k) for p 2 1 and q 2 0, and formula (1.3), 

we obtain Pi-l=zg+‘PA. Substitution into (1.6) yields the desired result. 0 

The key step in our calculation of a Poincare series of a local ring is Avramov’s 

theorem, which shifts most of the work to calculating the Poincare series of a Tor- 

algebra, which often has a much simpler structure. To state his theorem we must 

introduce the notion of small homomorphism. Many equivalent definitions can be 

found in [3, Theorem 3.11. 

Definition 1.5. A homomorphism f: R-tS of local rings over k is smatf if the 

induced map 
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f* = Torf(k, k) : TorR(k, k) -+ Tors(k, k) 

is injective. An ideal I in R is small if R-+R/I is a small homomorphism. 

Example 1.6. (a) If R, m, k is a regular local ring over k and I is an ideal contained 

in rn2, then I is small; see [3, Example 3.111. The underlying reason is that the 

minimal (Tate) resolution of k over S= R/I contains the Koszul complex IKS as an 

S-module summand and IKS= lKROR S since 1~ m2, where IKR is the Koszul resolu- 

tion of k over R. 
(b) Let X denote a collection of indeterminates {X,, . . . , Xn}. An ideal I in z[X] 

is generically perfect of grade g if g = grade IR[X] = pdRl&?[X]/IR[X] for R equal 

to Z or iUpZ for some prime p. (The grade of an ideal .I in a ring R is the length of 

the longest R-sequence contained in J. ) Let Z be a generically perfect ideal of Z[X] 

contained in (Xr , . . . , X,)2 and suppose Q is a map of rings from z[X] to a local 

ring R, m with @(Xi) in m for all i. If grade(ZR) =grade I, then IR is a small ideal 

in R by [3, Theorem 6.21. 

We can now state Avramov’s theorem. 

Theorem 1.7. [3, Corollary 3.31. Let f: R-tS be a small homomorphism of local 
rings over k. If f gives S the structure of a finitely generated R-module and the 
minimal R-free resolution of S has the structure of a DG-algebra, then 
PR Pi’ = Pi’, where A = TorR(S, k). 0 

By Kustin and Miller [15] the hypothesis that the minimal R-free resolution of S 

be a DG-algebra is satisfied if R is a Gorenstein local ring in which 2 is a unit and 

S = R/Z for I a grade four Gorenstein ideal. It also holds if I is a codimension g 

‘Herzog ideal’, as explained in [17] and Proposition 2.4. 

2. PoincarC series 

If I is a grade four Gorenstein ideal in a regular local ring R over k and char k # 2, 
then we shall prove (Corollary 2.3) that PRPGjt is a polynomial. The following 

result of Kustin and Miller [ 161 is used to compute P,, , as required in Theorem 1.7. 

Theorem 2.1. Let R, m, k be a Gorenstein local ring in which 2 is a unit, and assume 
k has square roots. Let I be a grade four Gorenstein ideal in R and 
A =TorR(R/I, k). Then A is a Poincare duality r-algebra. Moreover there are 
bases {x,, . . . , x,}forAI,{y1,...,y,-,,y;,...,y~-1)forA2,{zl,...,z,)forA3, and 
{w} for A4 SO that the multiplication Ai x Ad_i +A4 = k is given by X;Zj = 6, W, 

Yiyj= 6, w, YiYj =0 =yjyi, and the other products in A are given by one of the 
following cases: 
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(A) The ideal I is generated by a regular sequence in which case A = E(@p= , kx;). 
(B) All products in A, A I and A I A 2 are zero, 
(c) Ail products in A1 A, and A, A2 are zero except those indicated in the multi- 

plication tables: 

m e- 

(D) There is an integer p such that x,, + , xi = y;, x,yl= zp+ ,, and xp+ , y,!= - zi for 
1 I is p, and all other products in A, A, and A, A2 are zero. 0 

We assume for the remainder of this paper that the residue field k contains square 

roots. (Since the Poincare series PR and P R,t are unchanged under flat extension 

this condition can be obtained.) Let p(I) denote the minimal number of generators 

of I. 

Theorem 2.2. Let R be a Gorenstein local ring over a field k with char k#2, and 
let A = TorR(S, k), where I is a grade four Gorenstein ideal in R with p(I) = n and 
S = R/Z. Then A has one of the forms (A), (B), (C), (D) as described above and 
Pi’ is respectively equal to 

(A) (1 - 22)4, 

(B) 1 -nz2-2(n-1)z3-nz4+z6, 

(C) 1 - nz2 - (2n - 5)z3 - (n - 6)z4 + 22’ - z6 - z’, 

(D) 1 - nz2 - (2n - 2 -p)z3 f (2p + 1 - n)z4 + (p + l)z5 - 2’. 

If, further, I is small, then PRPs’ = Pi’. 

Proof. The last statement is just Theorem 1.7. If A = E(@p=, kx;), then by Ex- 

ample 1.1(a), Pi’ = (1 -z~)~. If A has form (B), then Avramov [3, Proposition 9.61 

has shown that P,;‘= 1 fz-zPi+z5+z6. Reading off the Betti numbers in a 

minimal R-free resolution of S, we obtain Pi = 1 + nz + 2(n - 1)z2 + nz3 + z4 and 

formula (B) follows. 

If A has form (C) we shall compute PA and then apply Theorem 1.4 to the Poin- 

care duality r-algebra /1. The following decomposition of iI = A/A4 was suggested 

to us by Avramov. Let A = E(@3i=, kx,) and A = A/A3. Set 

W=k[-1]“-3@k[-2]2”-8@k[-3]n~3, V=A+[-11, and B=A!x V. 

It is not difficult to see that ii = BK W. By Theorems 1.4 and 1.2 we have 

P$=z6+p+z6+(1 -zP,“)P,-1. 
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By formula (1.3) PBw= QP, where Q = (n - 3)~ + (2n - 8)~’ + (n - 3)~~. Application 

of Theorem 1.2 yields 

Now I/= A + [ - l] and A + is the kernel of the augmentation ?i + k, so by (1.3) and 

dimension shifting with Tor”(. , k) we obtain P$=z(P, - 1)/z. Hence 

P;‘=(l +z)Pi’ -z+z6-zQ. 

Finally we apply Theorem 1.4 and Example 1.1(a) to see that Pi’ = Pi1 - z5 = 
(1 - z2)3 - z5; formula (C) follows directly. 

Now suppose n has form (D) with dim A1/lt =p. Let A be the subalgebra 

k]x t, . . . , xp, y;, . . . , yi, z,, ,I. Clearly A is a Poincare duality algebra of length three 

in which all products of generators are zero except for those that give the pairing, 

namely xiyl = z, + 1. Let ii =A/,4, and A =,4/A,. Evidently A is a trivial algebra, 

and if we let C=k[x,+,]/(x,+, )2 then B=A@ C is also a Poincare duality r- 

algebra of length four, where B4 = k(z,+ ,0x,+ 1). Since k is a field the minimal B- 
free resolution of k is simply obtained by taking the tensor product of the respective 

minimal free resolutions over A and C (use the standard Kiinneth formula); thus 

PB = PA P,. Let B = B/B4 and M be the trivial B-module 

k[_l]“-P-10k[_2]2”-2-2pOk[_3]fl-P-’. 

The key observation is that /i =B P<M, which the reader may easily verify. Then 

by Theorems 1.4 and 1.2 we have 

Ml Pi’ =z6+ Pj’ =z6+ 1 -zps , 
( ,> 

pi’ 

and P~=QPB where Q=(n-p- l)z+(2n-2-2p)z2+(n-p- 1)z3 by using (1.3). 

Two applications of Theorem 1.4 yield 

P,-1=z6+Pj1-zQ=P~1-zQ=(Pj1+z5)P~1-zQ. 

By Corollary 1.3 we have PiI = 1 -pz2-pz3 and PC’ = 1 -z2, and formula (D) for 

Pi* follows readily. q 

To relate P,P&!, to Pi’ we need I to be small. For R a regular local ring small- 

ness just amounts to ZC m2. Should this condition fail, we have, in effect, an ideal 

in lower codimension with well-known Poincare series. 

Corollary 2.3. Let R, m, k be a regular local ring over a field k of characteristic 
different from two. Let I be a grade four Gorenstein ideal in R with ,u(Z) =n. 
If I is a complete intersection, then PR(PR,I)-l = (1 + z)“( 1 -22)4-S where s = 
dimk(I+m2)/m2. If I is not a complete intersection and is not contained in m2, 
then 

PR(PR,I)-l = 1 + 2 - (n - 1)z2 - 2(n - 1)z3 - (n - 1)z4 + z5 + z’. 
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If I is contained in m2, then PR(PR,I)-’ is one of the polynomials listed in Theorem 
2.2. 

Proof. The first assertion is classical and can be found in [3, Proposition 4.21 or 

[9, Corollary 3.4.31; or one can specialize to the small case and use Example 1.1(a). 

For the second situation choose x in I \ m2 and let 7 be the image of I in the regular 
- - 

local ring R = R/(x). Now R/I= R/I, so 1is a Gorenstein ideal of grade three which 

is not a complete intersection. By Avramov [3, Theorem 8.21 or Wiebe [24, Satz.91 

we know that 

PR(P~,~)-~ = 1 - (n - 1)~~ - (n - 1)~~ + z5. 

The result follows since PR = (1 +~)PR. If, finally, Zc m2, then I is small and 

Theorem 2.2 applies. 0 

As a further application of these techniques we calculate the Poincare series of 

an algebra R/Z defined by a grade g ‘Herzog ideal’. Herzog and Steurich [12] have 

already made this calculation, but they did not know that the minimal resolution 

of R/Z by free R-modules admits the structure of a DC&algebra. Consequently they 

were obliged to make some rather nasty computations of Massey products. Our 

proof is in essence the same, but the ugly details are masked by Avramov’s theorem. 

Proposition 2.4. Let R, m, k be a local ring over k and let o, a,, . . . . as, and xij for 
1 I ir g, 15 j< g - 1 be elements of m. Let ci be (- l)‘+ ’ times the determinant of 
the submatrix of X formed by deleting row i. Let I be the ideal generated by C aixh 
forlzzjlg-landci+uaiforl<isg.IfgradeI=g, thenIissmalland 

PR(PR,&l =(l +#[(l -z)g-l-z]. 

Proof. The ideal I is generically perfect by [lo, Corollary 4.5 and Example 31 or 

[17], so by Example 1.6(b) the ideal I is small. An explicit DC-algebra structure on 

the minimal R-free resolution [F of R/Z can be found in [ 171. By Avramov’s theorem 

PR(PR,I)-’ = Pi’ for A = TorR(R/I, k) = [FOR k. Let U= @I; kz; and V= @=, kx; 
be vector spaces with basis elements Zi and Xi all of degree 1. From [17] we have 

E,(u) if i=O, 

E,(WOE,(V) if i= 1, 

/Ii= E;(U)@Ei(V)@Ei_l(U) if 2Si<g-2, 

Eg-~(V)OEg-2(W if i=g- 1, 

E,- ,(V if i=g, 

and the multiplication ,4; xA~+A~+~ is given by 



266 C. Jacobson et al. 

It is easy to see that pi x/i,_; +/1, = k is a perfect pairing for all i. Let E = E( U), 

E=E/E,_,, M=i?+[-11, and W be the graded vector space @I: E,(V). 

There is no difficulty verifying that ;i = (E tx M) K W, where ED< A4 acts trivially on 

W. In particular the multiplication (E DC M)i x (EK M)j j(E K M)i+j given by 

[ A!,1 [J,1= [ 

Ai AfIj 

O ~iA~j_ 1+ (-l)‘jAjAA,_ 1 I 

agrees with the formula given above since (- l)‘~i_ 1 A~, = (- l)“~j A~i_ 1. We pro- 

ceed as in part (C) of the proof of Theorem 2.2 (taking A = ED< M): 

=Z g+2-2((1 +z)g- 1 -zg)+Pil, 

P~‘=(l-zP~)P~1=(1-z(P~-l))P~~ 

=-z+(l +z)Pi’ 

=-z+(l+z)(P,-r-zg+i). 

The result follows since Pi’ = (1 -z~)~~ ‘. 0 

3. Golod homomorphisms 

It is well-known [5,19,23] that if f: R+S is a surjective map of local rings over 

k, then there is a coefficient-wise inequality of Poincare series 

PSIPR(l -z(Pi- 1)))‘. 

If equality holds we say f if a Golod map. Our main result in this section is that 

every codimension four Gorenstein algebra which is a quotient of a regular local 

ring can be reached from some regular local ring by a sequence of Golod maps. 

Equivalent definitions and various related conditions are discussed in Avramov 

[2, 31, Levin [l&19], and Lijfwall [21]. In particular, if n*(S) is the graded Lie 

algebra associated to S (the homotopy Lie algebra of S, denoted n*(S), is de- 

termined by the property that its universal enveloping algebra U(n*(S)) is iso- 

morphic to Exts(k, k)), then f is a Golod map if and only if the sequence 

O-L(W)TT*(S)%C*(R)+O 

is exact, where L(W) is the free graded Lie algebra on a vector space basis of 

W= Tor:(S, k)[- 11. For the interesting case when S is not a complete intersection, 

Avramov [l] showed that if S is a codimension four Gorenstein algebra, then n*(S) 
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contains a free Lie algebra on two generators. He used the then available primitive 

knowledge of the multiplicative structure of /1. We use [16] to give a description of 

rc *(S) as an extension of a finite Lie algebra rr *(E) by a free Lie algebra L( IV), thus 

determining the graded vector space structure and most of the Lie algebra structure 

of n*(S). 

One of the key examples of a Golod map, found already in 15, Theorem 3.71, 

motivated Levin to introduce the concept. If R is an arbitrary local ring and b E m2 

is not a zero-divisor, then R+R/(b) is a Golod homomorphism. It follows by induc- 

tion that if b=6,,..., 6, is a regular sequence contained in rr2, then P,(P,,u,)))l = 

(1 -z2)g, as in Corollary 2.3. Roos [23] denotes by .rJY the class of rings that can 

be reached from a regular local ring by a finite sequence of Golod surjections; we 

call such rings Golod attached. We recall two of the many properties of rings in .-J%. 

The qth deviation, e,(S), of a local ring (Sk) is the number of variables of 

degree q adjoined in a minimal Tate resolution of k over S, and is also dimk rP(S). 

(The classical deviations, as in [9], are sq=eq+ 1 for q 2 0.) It is an open question 

([9, p. 1541 or [l, Conjecture C,]) whether e,(S)>0 for all qr 1 if S is not a com- 

plete intersection. Gulliksen [8] further conjectured that e,(S)<e2,(S) for all odd 

q> 1. Avramov and Halperin [4] have proved the first conjecture for Gorenstein 

rings of codimension four; Gulliksen [8] has proved his own conjecture for Gorens- 

tein rings of codimension three. Recently, Jacobsson [13, Corollary l] has proved 

Gulliksen’s conjecture for all rings in the class .dY; hence we shall see that it also 

holds for Gorenstein rings of codimension four. 

Roos [23, Theorem 51 has shown that if S is attached to a regular local 

ring R, k by a sequence of s Golod surjections, then the finitistic global dimen- 

sion of the Hopf algebra Exts(k, k) is at most S. Hence we shall see that 

fin.gl.dim. Ext,(k, k)<3 if S is a codimension four Gorenstein ring that is not a 

complete intersection (and is equal to four if S is a complete intersection of 

codimension four). All of these results follow from our main theorem: 

Theorem 3.1. If R, m, k is a regular local ring over a field k of characteristic not two 
and I is a grade four Gorenstein ideal in R, then there is a regular sequence a in I 
so that the natural map R/(aj-+R/I is a Golod map. 

Proof. (Recall that we are assuming k has square roots; see Theorem 2.2.) The proof 

is broken down according to the cases of Corollary 2.3. If lis generated by a regular 

sequence, then the identity map R/Z-R/Z is the desired Golod map. If I is not a 

complete intersection and is not contained in m2, then let a0 be an element in I\ m* 
and let 7 be the image of I in the regular local ring R = R/(a,). Then R/Z= R/Z and 

f is a grade three Gorenstein ideal which is not a complete intersection. By 

Jacobsson [13, Appendix] there is an element al in R such that a1 is not a zero- 
- -. 

divisor in R and R/(s,)-+R/I 1s Golod. Then ao,al is a regular sequence and 

R/(ao, al)-tR/Z is Golod. If Z is not a complete intersection, but is contained in m2, 
then Z is a small and /1= To?(R/Z, k) has one of the forms (B), (C), (D) described 

in Theorem 2.2. 
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Case (B). We shall prove that there is a regular element a in Z such that R/(a)+R/Z 
is Golod. We let (Y, d) be the Koszul resolution of k over R and we set Y= 

R/Z@, f. Then _4 =H( Y) and a basis for the reduced homology is given by the 

equivalence classes of the cycles xl,. . . , x,, in degree 1; yi, . . . , yn_ 1, y;, . . . , yAp 1 in 

degree 2; zl , . . . , z, in degree 3; and w in degree 4. After possibly modifying xl by 

a boundary, we may assume that there is a pre-image 2, of xi in Y such that di, = a 
is a regular element in R (and obviously a E Z since xl is a cycle in Y). In Y all pro- 

ducts of the listed cycles are boundaries except that xizj = 6,W and Y;Y~ = 6,W. Let 

Z?= R/(a) and Y= YoR Z?. The image X?i of 2, in Y is a cycle; if we adjoin a 

variable S of degree two so that dS=,fl, then Y(S) is a minimal Z?-resolution of k. 

To prove that Z?-+R/Z is Golod it suffices to prove that P2(PR,[)-l = 

1 - Z(PR” - l), or equivalently, 

(3.2) 

Now a is a regular element in m2, so R + Z? is Golod and P,qPi’ = (1 - z2))‘. Using 

Theorem 2.2 to rewrite PRPI;:I we find that it suffices to prove 

P~“=1+(,-l)z+(2n-2)z2+(2n-1)z3+(2n-2)~ ZI 
i-4 

(3.3) 

where n = p(Z). 

The Poincart series Pi” is obtained by studying the homology of Y(<S>@,Q R/Z= 

Y(S). For each i > 0 we select and fix cycles of Y(S) with the form described below: 

L 

XjSCi)+lower order terms in S, 2sjln, 

ZjS 
(i- 1) +"', 2sjln, 

t 

y.c$-l)+ 

&ii- 1) + 
... 9 lSj<n-1, 

J .*. 9 lljln-1. 

(3.4) 

(3.5) 

It is not difficult to see that such cycles exist, and it is clear that 

(111 {Xj12ljSn}, {_,vj,_YJl lljln-1), 

{Zil lliln}U{xjS(‘)121jIn) 

represent bases of ZZi( Y(S)) for i = 0, 1,2,3. For i 12 we will show that the 2n - 2 
cycles in (3.4) represent a basis of Hzi+ i( Y(S)) and the 2n -2 cycles in (3.5) repre- 

sent a basis of ZZ2i(Y(S)). Once this has been accomplished, (3.3) follows 

immediately. 

First we demonstrate that we have a generating set for ZZ( Y(S)); we induct on the 

divided power degree in S. We shall write l.o.t.(S) to denote ‘lower order terms in 

S’. If q =@(‘)+l.o.t.(S) is a cycle in Y(S), then r is a cycle in Y. Recall that 
ds(‘+‘) =X1 s@) and d(ziS(‘+‘)) = WS (i). It is not difficult to select x, an R-linear 

combination of cycles from (3.4) and (3.5), and an element @ of (l,zi)S(‘+‘) so that 

the leading term of u - [x + do] is (u + u’zi + db)S”’ for some b E Y and u, U’E R. 
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Then 

O=d(l?-[X+d(~+bS’;‘)]) 

= (UX, - U’zix,)S(;- l) + (db’)s(;-‘)+ l.o.t.(S) 

=(ux,+u’w+db’)S(‘~‘)+l.o.t.(S) 

for some b’~ Y. Since i z 2 it follows that the images ii and ii’ of u and U’ respective- 

ly are zero in R/m and r~ -x differs by a boundary from a cycle that has degree less 

than i in S. By induction this cycle differs by a boundary from a linear combination 

of cycles from (3.4) and (3.5); thus so does q. 

To conclude the proof we show that the cycles of (3.4) and (3.5) represent linearly 

independent classes in homology. Suppose that some R-linear combination of these 

cycles is a boundary. Observe that if d( C s~S(;)) =&SC”+ l.o.t.(s) is a homogeneous 

boundary element in Y(S ), then (noting that deg si+, = deg si - 2) 

r=ds;+(-l)degS’S;+,X,, 

O=ds;+, +(-l)de%i+2X,. 
(3.6) 

By degree considerations there are just three cases to handle: 

(a) If (Cy_, c-w,x,)S(‘)+l.o.t.(S) is a boundary, then C,“_z alx,=dsi+si+lxl and 

s ;+l must be in R/Z. Since {x,, . . . , x,] is a basis of H,(Y), all d; must be zero. 

(b) If (Cy:,’ cr;y; + a;y;)S’;‘+ l.o.t.(s) is a boundary, then by (3.6) deg s;+~ = - 1; 

hence sit, is a cycle of degree 1 and since A has form (B) the product s,+ rxi is a 

boundary. It follows that C a,y, + a;y; is a boundary, and therefore 0; = a;= 0 for 

all I. 

(c) If CC,“=, a;z;)S(‘)+l.o.t.(S) is a boundary, then by (3.6), degs,+2=0 and s;+~ 

is in R/Z. Since x1 is not a boundary in Y we conclude that s;+~ is in m. Thus 

s ,+2=dt for some tin Yr, and y=s;+i + tx, is a cycle in Y2. Now we have C (x/z; = 

ds; + (y - tx,)x, . Since Y is a DG-algebra, x: = 0; and since A has form (B), yx, is 

a boundary. Hence C QI;Z; is a boundary and all &; are zero. 

Case (C). We shall prove that there is a regular sequence al,a2 in Z so that the 

natural map R/(a,, a,)+R/Z is Golod. Both Y and Y are defined as in case (B) 

above. The multiplication on Y is given by X;Zj = 6, w, y;y,! = 6, w, and with the ex- 

ception of the products listed below, all other products of cycles are boundaries. 

Since we are lifting the multiplication from A = ZZ( Y) there is some harmless indeter- 

minancy which we denote ‘+b’, i.e. ‘plus a boundary’. Note, however, that since 

Y is a DC&algebra x2 = 0 exactly. 

XI 

Xl 0 

x2 -y,+b 

x3 Y2+b 

_JflfJ, ;-i!gJ m 

For each i = 1,2, let 2; be a preimage of xi in Y and let dii = a;. By modifying A?i 
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and .?Z by boundaries, if necessary, we may assume that a,, a1 is a regular sequence 

contained in I. Let R= R/(a, , a2) and Y= FOR R. We adjoin variables St and Sz of 

degree two to kill Zr and Z1, the cycles that are the images of Z1 and g1 in 8. Then 

Y(Si, SZ) is a minimal R-resolution of k. 

To prove that &R/Z is Golod, it suffices to verify formula (3.2). Since al, a2 is 
a regular sequence in m2, we have P,(Pd)-’ = (1 --z~)~; using Theorem 2.2 for 

PR(PR/I)-‘, we see that it suffices to prove 

P;“=l+(n-2)~+(2A)z~+(n-3) i iz’ (3.7) 
i=3 

where n =p(l). 

The Poincare series Pi” is obtained by studying the homology H of 

~((S,,S,)O,-(R/Z)=Y(S,,S,). It is clear that (11, (Xjj3Ijln) and 

{~j~4~j~n-1}U{y~~lljln-l} p re resent bases of H, for i=O, 1,2. 

Fix an integer k 2 1. We claim that there are (n - 3)(2k + 1) cycles of form (3.9a) 

and (n - 3)(2k) cycles of form (3.9b) that represent bases for H2k+l and Hzk respec- 

tively; from this (3.7) follows immediately. (Here + ... denotes terms of lower total 

order in S1 and S,.) 

i 

+S,‘“‘$-a)+ . . . Osask, 4111n, 

z~S~(U)S:~-~-‘)+..=, Osask- 1, 4<1<n, 
(3.9a) 

_)#a)S(k~i~U)+... 

y,s:a~s:k~lW+ 

1 

, lrask-1, 
. . . 

&)Sjk - 1 - 4 + . . . ’ 
O<a<k-1, 4111n-1, 

, Ozark- 1, 4111n- 1, 

~;Sl(a)S~~-‘~~)+y;Sl(a+~)S:~~~~~)+ . . . . Ola<k-2, (3.9b) 

y;S’k~i)+ 
1 

. ..) 

_&q-1)+ . . . . 

It is not difficult to see that such cycles exist. To see that they generate Hi for i L 3 
we induct on the polynomial degree in S, and S,. Let q = Cl=, qa be a cycle in 

Y(S,, S,) with each qa a (divided power) polynomial of degree a in S, and S2 with 

coefficients in Y. In particular in the highest degree 

where each cjj must be a cycle in Y. Recall that d(z, Sl(‘+‘)Sy)) = r~Sl(‘)Sr) (since 

Y, = 0 boundary elements in Y, are all zero). We can choose x, an R-linear com- 

bination of cycles from (3.9a) and (3.9b), and an element 0 of 

(1,Xl,X3,Y;,Y;,Z,).(Sl,SZ)(k+1) 

so that the leading term of u - (x + da) is 
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for some Q, in Y and uU, u:,u:, v,, vi, ul in R. Applying d to the cycle 

q-pd(a+ C~=O~,S,‘“‘S;kpa)), and collecting coefficients of each Sl(‘)$-@, we 

see that ii, = a: = ai = IJ, = rs: = 0: = 0 for all a. Hence the cycle v -x differs by a 

boundary from a cycle that is a polynomial of degree less than k in St and S,; by 

induction this cycle differs by a boundary from a linear combination of cycles of 

(3.9a) and (3.9b). 

We conclude the argument by showing that the cycles of (3.9a) and (3.9b) repre- 

sent linearly independent classes in homology. Suppose that some R-linear combina- 

tion of them is a boundary. To show that all the coefficients are zero, we make the 

following observation (also to be used in Case (D)). If spy and [ are homogeneous 

elements in Y so that C s~~S~~)S~) is a homogeneous element in Y(S,, Sz) and 

d(c s S(p)S(4))=#i)s(j)+ . . . 
P4I 2 I 2 

where the other terms have degree at most i+j in St and S2, then 

r=ds,j+(-I)degS1/(s;+,jX]+siJ+IX2), 

(3.10) 

It suffices to handle three cases: 

(a) Suppose (Cl_, ~,x,)S,(“S’~‘+ ... 
2 is a boundary. In the notation of (3.10), 

.s,~ = 0 if c+ d= i+j+ 2 by degree considerations, and similarly s,~ is in R if 

c+d=i+j+ 1. Thus by (3.10) we see that [= C C+X~ is a boundary in Y(S,,&), 

which implies b,=O for /=4, . . . . n. 

(b) Suppose (Cy_, a,z,)S{“S’j’ + ... 
2 

is a boundary. Now 

1 

4 if c+d=i+j, 

degscd= 2 if c+d=i+j+ 1, 

0 if c+d=i+j+2. 

Since the cycles xl and x2 represent the beginning of a basis of H,(Y), it follows 

that .s,~ is in rn for c + d = i + j + 2 and hence there exist t, in Y, such that dt, = s,,. 

Of course (dt,)x, = d(tcdx,) for all 1. By (3.10) both s;+ 1 J + t;+ZjX1+ t;+ Ij+ Ix~ and 

s,,+ , + ti+, j+ ,x1 + t,j+2x2 are cycles; thus they are in the R-submodule of Y2 spann- 

ed by dY, and (~1, . . ..Y.-,,Y; , . . . , y; 1}. Consequently there exist R-linear com- 

binations ql and q2 of the yi and y,’ so that c= Cl_, (Y,z/ equals 

(~~-f;+2jx,-f;+,j+lx2)xl+(~z-t;+,j+~x~-t;j+2x2)x2+boundary 

= ~1x1 + q2x2 + boundary. 
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Recall that XT =0 and x,x2= -x2x, since Y is a DG-algebra, and each rixj is in the 

R-submodule of Y, spanned by dY, and {zl, z2, z3}. It follows that &, = 0 for 

I=4,...,n. 

(c) Label the leading terms of the cycles of (3.9b) as follows: 

<, =y, $‘)$-2) 
2 ’ r2=Y*S1(2)S(k-3),...,rk~,=Y P’) 2 11 ’ 

and tk to t2k(n-3) the other leading terms in some order. Suppose C~~‘~-3’ a,<, + ..a 

is a boundary. Fix i and j with i+j= k - 1. By (3.10) and degree considera- 

tions sCd = 0 if c + d = k+ 1 and s,, is a l-cycle if cs d = k. The coefficient 5 of 

S”‘Sp’ is equal to dS;j -s;+ljxl -s;j+1~2_ 1 The product of two l-cycles is in 

the R-submodule of Y2 spanned by dY, and (_~l,y2,_~3); hence so is 5. Since 

{Y ,,...,Yn-,,Y;,..., y; 1} represents a basis for H2( Y) it follows that 8, = 0 for 

ki 15 2k(n - 3). We are left with a boundary of form C::,’ a,yl #@SF- ’ -‘) + 

l.o.t.(S1, S,). By (3.10) there is a system of equations 

O=dSok-,-s,k_,X,-sgkX2, 

ak-,_h=dSk-,o-Skox,-Sk-1,x2, 

and each s,d is a l-cycle if c+ d= k. Thus s,d = I:=, ui(c, d)Xi + dCT,d for some 

ui(c, d) E R and (7,d E Y2 if c+ d= k. All terms in the product sCdxl or s&2 are 

boundaries in Y, except possibly those involving x,x2, x1x3, or ~2x3, which are 

equivalent to the independent cycles y3, -y,, and yl respectively. The top equation 

yields ii3(1, k - 1) = 0; the next then yields 8, = ii3(1, k - 1) = 0 and ~~(2, k - 2) = 0. 

Proceeding inductively we obtain d, = ii3(1, k- I) = 0 and ii,(l+ 1, k- I- 1) = 0 for 

each 1. 

Case (D). We shall prove that there is a regular sequence ao,a, in I so that the 

natural map R/(ao,al)+R/I is Golod. Both P and Y are defined as above. For 

convenience we reindex the basis elements of the reduced homology of Y as follows: 

they are the equivalence classes of cycles x0, . . . ,x,_ , in degree 1; 

Y,?...,Yn-,>Y; , . . . . Y,‘_~ in degree 2; zo, . . . , z,_ , in degree 3, and w in degree 4. The 

multiplication on Y is given by xizj = 6,w, ~;y,!=6~w, and with the exception of 

the products listed below all other products are boundaries: 

x,x; = y; + b, 

x,$=zo+b, lSi<p 

xoy,f=-z;+b. 

For each i = 41, let pi be a preimage of Xi in F, with dXi = ai, chosen SO that a,, a, 
is a regular sequence in I. Let a= R/(a,, a,), and adjoin variables So and S1 of 

degree two to kill the images of pi in P= PORE. Once again, to show that R-+R/Z 
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is Golod it suffices to verify (3.2), or equivalently in this case, 

p~=1+(,-2)z+(2n-p-2)22+ f [i(n-p-l)+p-llz’ (3.11) 
i=3 

where n =,u(Z) and p =dimAf . 
The Poincare series Pi” is obtained by studying the homology H of 

Y(SO,Sl)@~(R/Z)= Y(&S,). It is clear that {l},{Xj12SjS~-l}, and 

{~j~p+lrj~n-l)U{y~~I~j~n-l} representbasesofH, fori=0,1,2. Fixan 

integer k L 1. We claim that there are p - 1 + (2k+ l)(n -p - 1) cycles of form 

(3.12a) and p- 1 + (2k)(n -p- 1) cycles of form (3.12b) that represent bases for 

H 2k+ 1 and ff2k; from this (3.11) follows immediately. 

i 

X,S,‘k’ + * *. 
.+,$Q’k-~‘+ . . . 

2115p, 

,,&@&M+ .‘.. 
Osask, p+l5Z<n-1, (3.12a) 

1 , Orask-1, p+l~f~n-1, 

1 

y,S~)S,(k~l-cr)+..., Osask-1, p+l~/~n-1, 
y;$@~(k-lM+ . . . 

y;,$“~‘i’+ . . . 
, Ozark-1, p+l~Zrn-1, (3.12b) 

I 2sl5p. 

It is not difficult to see that such cycles exist, and to see that they generate Hi for 

i23 we shall induct on the polynomial degree in S, and Si. If YZ is a cycle in 

Y(S,, Si) with leading term of degree k in S, and Si, then we can find x, an R- 

linear combination of cycles from (3.12a) and (3.12b), and an element IS of 

(LX, ,..., x,y; ,... &~.o)(~,,~,)(k+‘) 

so that the leading term of q - (x + da) is 

with u,,uI,,u$,v, in R and Q, in Y. As in case (C) we apply d to see that 

ii, = fi,0 = ii;a = 0, = 0 for all I and a, and the argument concludes exactly as in case 

(C). To verify that the cycles of (3.12) represent linearly independent classes in 

homology we again adopt the notation of (3.10) and consider the three cases, which 

are sufficient. 

(a) If (C”: ’ a x )S”‘S’j’ + 
Y(S0, S,). SLke 

11 0 1 .+. is a boundary, then Cy:i c.rlxl is a boundary in 
{x *, . . . ,x,, _ , } represents a basis for H,, it follows that each dl is 

zero. 

(b) If (C;:,,‘+, (r,z$!$$$o’+ a.. is a boundary, then [= C cw,z, has the form 
dsg +~i+ IjXg+Sij+ *XI, where degs;+ ij=degsij+ i=2. Hence [ is in the R- 

submodule of Y, spanned by dY4 and {zo, . . . , z,}, and therefore each a, is zero. 
(c) If @$‘S(j)+ **. 

d~~-Si+ijXo-~,;+iXi, 

is a boundary with i= Cl:j+, alyl+ CT:*’ c$y;, then [= 

where deg s;+ ij = degsij+, = 1. Hence [ is in the R- 
submodule of Y, spanned by dY, and { yl,. . . , yp}, and therefore each d, and a; is 

zero. 0 
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Let R be a regular local ring over a field k and let I be a grade four Gorenstein 

ideal in R. Then S = R/Z is either a complete intersection or it is a Gorenstein local 

ring of codimension three or four. If S is a complete intersection, most of its homo- 

logical properties are known. The homotopy Lie algebra z*(S) is finite-dimensional 

(since zk3(S) = 0), the Ext-algebra is Noetherian; i.e. the A-dimension of Ext,(k, k) 

is zero (Roos [23]); also from [23] the finistic global dimension of Ext,(k,k) is 

equal to e*(S), which is at most four, and the Poincare series Py(z) is rational for 

every finitely generated module M. 

Theorem 3.1 provides much information for the case in which S is not a complete 

intersection. 

Corollary 3.2. Let R be a regular local ring over a field k not of characteristic two. 
Let Z be a grade four Gorenstein ideal in R such that S = R/Z is not a complete in- 
tersection. Then 

(i) P:(z) is rational for every finitely generated S-module M. 
(ii) There is an exact sequence of graded Lie algebras 

where L(W) is a free Lie algebra, dimk n’(Z?) = dimk n’(S) = e,(S), dimk rr’(R”) = 1 

or 2, and dimk n’(R) = 0 for i L 3. 

(iii) e;(S)>0 for all i 11 and eu(S)>ei(S) for all odd i> 1. 

(iv) The finistic global dimension of Exts(k, k) is at most three. 
(v) The /I-dimension of Exts(k, k) is one; i.e. the Ext-algebra is coherent. 

Proof. Property (i) follows from a result of Levin (unpublished): if E is a complete 

intersection and l?-)*S is a Golod map, then P?(z) is rational for every finitely 

generated module M. The Lie algebra definition (3.1) of a Golod map gives us (ii), 

and (iii) follows from Jacobsson [13]. The last two statements follow from Roos 

[23]. 0 
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Note added in proof 

In Theorem 2.2 and elsewhere, by inflation of R (see N. Bourbaki, Algtbre Com- 
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mutative, Chap. IX, 38-39) we may pass to a flat extension, for which the residue 
field k has 1/2 and 1/-1, the only roots actually required. Since the PoincarC series 
remains unchanged, we need only assume char kf2. 
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