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Let R be a regular local ring over a field k of characteristic different from two and let S=R/J
be a codimension four Gorenstein quotient with the same embedding dimension e as R. The Poin-
caré series of S is defined to be Pg¢(2) =¥ dim, Tor,‘-s(k,k)zi: ¥ dim, Extfg(k, k)z'. We show that
Ps(z)=(1+2)°/p(z), where p(z) is a polynomial of one of four possible forms (explicitly given).
As a corollary it follows that either S is a complete intersection or there exists a complete intersec-
tion R=R/(a,,a,) with g, €1 such that R— S is a Golod homomorphism. The structure of the
homotopy Lie algebra of S, n*(S), can then be elucidated: it is either finite-dimensional or the
extension of the finite-dimensional Lie algebra n*(R) by a free Lie algebra.

Introduction

Let R be a regular local ring over a field & not of characteristic two. Let S=R/I
be a codimension four Gorenstein quotient of R such that R and S have the same
embedding dimension e;. The Poincaré series of the local ring S is

Ps(z)= Y dim; Tor (k, k)z'= Y. dim; Ext§(k, k)z'.

i=0 i=0
After some preliminaries in Section 1, we compute this series in Section 2. We have
the following result (Theorem 2.2, Corollary 2.3).

Theorem A. Let S be as above. Then the Poincaré series of S is given by Py(z) =
(1 +2)°/p(z), where p(2) is a polynomial of one of four possible forms (explicitly
given).

* Supported in part by the National Science Foundation.

0022-4049/85/83.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)



256 C. Jacobsson et al.

The Poincaré series is the generating series of the Yoneda Ext-algebra of
S, Extg(k, k). This is a Hopf algebra and is the enveloping algebra of a graded Lie
algebra m*(S), the homotopy Lie algebra of S; i.e. U(n*(S))=Exti(k k). The
dimension of n!(S) is e; and the dimension of 7%(S) is the minimal number of
generators of 1. If S is a complete intersection, then 7=3(S) =0; otherwise 7*(S) is
infinite-dimensional. In Section 3 we use Theorem A to obtain the structure of
n*(S), with the following results (Theorem 3.1, Corollary 3.2).

Theorem B. Let S be as above. Then either S is a complete intersection or there exists
a complete intersection R=R/(a,,a,) with a;el (allowing the possibility a,=a,)
such that R—S is a Golod epimorphism.

Corollary C. Let S and R be as in Theorem B. Then either n*(S) is finite-
dimensional or n*(S) is the extension of the finite-dimensional Lie algebra n*(R)
by a free Lie algebra.

Corollary D. Let S be as above and M be a finitely generated S-module. Then the
Poincaré series of M

P{(z)= ¥ dim(Tor? (M, k))z'
i=0
is a rational function.

If S is not a complete intersection, then by Corollary C the finitistic global dimen-
sion of Extd(k, k) is at most three and the A-dimension of Extg(k, k) is one (see
Roos [23]). Further results concerning the deviations of S are given in Section 3.

The main tool used to prove that Pg(z) is rational is Avramov’s theorem [3, Cor-
ollary 3.3}, which converts the calculation of Pg(z) to a calculation of the Poincaré
series of A =TorR(S, k), provided the minimal resolution of S by free R-modules is
a DG algebra. In [15,17] Kustin and Miller proved that this hypothesis holds in the
immediate cases of interest (all codimension four Gorenstein algebras, and certain
higher codimension Gorenstein algebras). Just recently in [16] they have shown that
in the codimension four case the algebra A has one of exactly four possible forms.
The proof of Theorem B is then modeled on that of Jacobsson [13], who proved
the same result in the case that S is a codimension three quotient of R.

1. Preliminary results
All rings and algebras are associative and have a unit element. Fix a field k of

characteristic not two. A local ring is a commutative noetherian ring with a unique
maximal ideal. A local ring over k is a local ring which has residue field &, and a
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map of local rings over k is a commutative triangle

R S

N/

The rest of the introductory material deals with graded algebras and modules; for
more detail consult [9].

In this paper A4 will always denote a graded-commutative algebra. That is,
A=@®7,A; with g,a,=(-1)7a;a,€ A;,; and ¢} =0 if i is odd, for all ¢;€A; and
a;€ A;. We shall assume A, is itself a local ring over k. Hence every graded-
commutative algebra that we consider comes equipped with an augmentation
homomorphism ¢:A4—k; the augmentation ideal /(A4) is defined to be ker(e) and
always contains A, =@®7, A;. Sometimes we impose the additional hypotheses
that 4 be connected (i.e. Ay=k) or locally finite (i.e. dim A; <o for all 7). If M is
a graded A-module, then the trivial extension AXM of A by M is the graded
algebra with underlying graded 4A-module 4@ M and multiplication given by

(ay, m Naz, my) = (a1ay, a\imy + (= l)deg(h)deg(m')azml)-

A DG-algebra is a graded-commutative - algebra A4 with a differential
d:A;—A;_, satisfying the Leibniz rule d(a;a,)=(da,)a; + (—l)ia,-daj for @;€ A; and
a,€A;. A I'-algebra is a graded commutative algebra with divided powers: for each
element a in 4 of positive even degree, there is an associated sequence of elements
{a'®,aV,a?®, ...} satisfying a@ =1, a'V = a, deg a¥’ = k deg @, and a list of axioms,
which we shall not need explicitly; see [9, Definition 1.7.1]. Many of the graded-
commutative algebras that we consider are automatically /"-algebras. For example,
if A=A, or if A is an exterior algebra on a graded vector space all of whose
elements have odd degree, or if A is the ‘trivial algebra’ k[x,..., x,1/(x|, ...,x,,)z,
then A is a I-algebra. If the field of rational numbers is contained in A4, then 4
is a I"-algebra with ¢ = (1/k")a*. Similarly if A,=0 for />4 and 2 is a unit in A4,
then A4 is a I-algebra. If V is a finite-dimensional graded vector space over k& with
a homogeneous basis {v,,...,v,, w,..., w;} where degv,; are odd and deg w; are
even, then E(V), the exterior algebra on V, is the I'-algebra A (@D_, kv)®
k{wy, ..., wy), where A" denotes the usual exterior algebra and &¢---) denotes the
polynomial algebra with divided powers.

A DG-algebra with divided powers that also satisfies the condition
da® = (daya®* =" is called a DGI-algebra. If {x;} is a collection of homogeneous
elements in a DG/ -algebra X (usually cycles representing basis elements of H(X)),
then the divided polynomial algebra Y = X{{S;}; dS;=x;) is a new DGl -algebra.
As an X-module Y is free with basis {Si(‘e‘) S‘.(f’)}; the grading is determined by
setting deg S; = 1 +deg x;. The differential and multiplication are natural extensions
of those on X. (The process is known as Tate’s method of ‘killing cycles’.) Gulliksen
[6; 9, Proposition 1.9.3] has proved that if R,m, k is a local ring, then the Tate
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resolution (X,d)=R(T},...)> of k is a minimal resolution in the sense that
dX ¢ mX. By its construction X is a DGl -algebra. Jdzefiak [14, Theorem 4.6] has
extended Gulliksen’s method to show that if A is a /-algebra, then the minimal
homogeneous resolution X of k by free A-modules is a DG/ -algebra. In this case
dX CcI(A)X.

We are ultimately concerned with the Poincaré series of a local ring S, m, k. If M
is a finitely generated S-module, then the Poincaré series of M as an S-module is

PY= 'Z:o dim, Tor’ (M, k)z' (1.1)

and the Poincaré series of S is Pg = P¥. In order to compute Pg we will often invoke
Avramov’s theorem (here Theorem 1.7) and calculate P4, where A is a suitable
chosen graded-commutative algebra. Defining the Poincaré series of a graded
algebra is a little tricky, so at the risk of pedantry we shall spell out the details.

Let M and N be finitely generated graded modules over a graded-commutative
algebra A. Then Tor;(A/I, N) is a graded A-module with gth homogeneous piece
Tor;fq(M, N). In other words if

X: —>X1—>XO—>M—>0

is a resolution of M by free A-modules, then each X,®,N=F (X,®4N), is a
graded A-module and
ker[(X,®N),—(X,_ ®N
Torsd b, vy = O ON = Xy O N,
Im[(X, . 1 ®ON); 2 (X, QON),]
Some authors (see for example Herzog and Steurich [11, 12]) consider a two-variable
Poincaré series:
PY(X,Y)= Y, dim, Tor/ (M, k)X"Y",

p,q=0

where k=A/I(A) via the augmentation. For us the Poincaré series of the graded
module M over A is the condensation to a single-variable series:

PY=Y < Y dim, TorjL(M, k))z"ngf(z,z). (1.2)
i=0 \ p+g=i

If S is local and M is a finitely generated S-module, then Pé" can be computed by
(1.1), or equivalently by (1.2) if S and M are treated as graded objects concentrated
in degree zero. Occasionally for typographic reasons we shall write P(4, M) for pi
and P(A) for P,. We now offer a few examples of Poincaré series for graded
algebras. These examples, and the following propositions, are results that we will
need in the sequel to calculate the Poincaré series of a codimension four Gorenstein
ring. They are, for the most part, analogs in the category of graded-commutative
algebras for well-known results in the category of local algebras.
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Example 1.1. (a) Let A = E(@/_, kv;) where deg(v;)=1 for i=1,...,n. Observe that
I(A)=A_,. By [l4, Theorem 5.2] the DGl -algebra A(S,,...,S,;dS;=v;) is a
minimal resolution of & by free A-modules. Thus Tor?(k, k) = A¢S,, ..., S,y ® 4 k is
simply the homology of the complex

_i_, kSl(Z)@ kSl(l)Sz(l)® "'@kS'(lz) _0, @kSi(l) —0—>k.

The symbol Si(l) represents an eclement of TorlAl(k, k) and the symbol S,.(”S;”
represents an element of Torf}(k, k). It is clear that Pg‘ =(1—z?)". Notice that the
coefficient of z’ in P, is zero if i is odd. This can not happen for Poincaré series
of local rings.

(b) If M is a graded A-module, then M[—d] is the graded module with M[-d]; =
M; . Since Torpy(M[—d], k) =Tor},_4(M, k) we see that

pMl-dl_ zdpM. (1.3)

The following result is due to Gulliksen [7, Theorem 2]; see also [3, Proposition
9.1].

Theorem 1.2. If A is a graded-commutative, locally finite, connected k-algebra and
M is a finitely generated A-module, then Py} = (1 —zPhHpl. O

Corollary 1.3. If A is the graded-commutative algebra k[ X,,..., X,1/(X;, ..., X,,)2
with deg X;=¢;=0, then le =1-zY;  z%

Proof. The proof is by induction on n. If n=0 the result is obvious. Let B=
kX, X 1/(X,5 ..., X, 1) and  suppose the result is true for
A=k[Xy,...,X,)/(X},..., X,)" Let e=e,,, and M=k[—e]. We may identify M
with the ideal (X, ) in B. Then B=A XM and by Theorem 1.2 and formula (1.3)
we have

Pg'=(1-2PiP;" =[1-2@PyIPy' = Py 2"
n+1
=1-z Y z¢ O
i+1
Notice that if ¢;=0 for all i, then P;'=1-nz, which agrees with the usual
formula [5; 3, Lemma 6.6]

(1+2)"

Lo/ n+1N
1— . i+1
,;.'<i+1>z

for the Poincaré series of the ungraded trivial algebra A =k[X|,..., X,]/
(Xips..., X,)%
The next result has a long history. Let R, m, k be a zero-dimensional Gorenstein

P, =
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local ring of embedding dimension greater than one. Let R =R/soc(R), where
soc(R) denotes 0:; m, the socle of R. Gulliksen [7] found that

Pyl=Pg' -2 (1.4)

if R is actually a complete intersection. Levin [19, Theorem 3.11] found that the
same formula holds if R has embedding dimension three. Levin and Avramov [20]
and, independently, Rahbar-Rochandel [22] showed that (1.4) holds without any ex-
tra hypotheses on R. In the graded case Avramov [3, Theorem 9.2] showed that if
A=E(@]_, kv)) with degv;=1 for i=1,2,3 and A=A/A;, then P;' =P ' — 7?3,
Herzog and Steurich [11] proved a similar result for certain cases in which 4 is a
homology algebra. More generally, the graded analog of a zero-dimensional
Gorenstein local ring is a Poincaré duality algebra. A connected, graded-
commutative, locally finite k-algebra A (over a field of characteristic different from
two) is called a Poincaré duality algebra of length g if A;=0 for i>g, A, =k, and
the pairings A; X A,_;~A, given by multiplication are perfect for all i. We thank
Avramov for the proof of the following graded version of (1.4). A statement of this
result in topological terms appears as Theorem 7.5.5 in Avramov’s article in the col-
lection Astérisque 113-114.

Theorem 1.4. Let A be a Poincaré duality I-algebra over k of length g. If
dimy (A, /A%)=2 and A=A/A,, then P;'=P;' - z¢*2,

Proof. If every element of 4 has even degree, then A is actually a commutative
Gorenstein ring and the proof is similar to the original proof [20, Theorem 2] in the
ungraded case. Since we have no need for this case in this paper, we offer no more
detail. Henceforth, we may assume that 4 has a non-zero element of odd degree.

Let w0 generate A4, and #0 be an element of A with the least possible odd
degree. Since A is a Poincaré duality algebra, there is a homogeneous element u in
A, with ur=w. We claim that ud,=wA=A, and u?=0. If there is a
homogeneous element v in 4, such that uv #0 is not in A, then by duality there is
another homogeneous element v’ in A, such that uvv’=w. Since degv+degv’'=
deg ¢, one of deg v, deg v’ must be an odd integer strictly less than deg ¢, contradict-
ing the choice of ¢. If u has odd degree, then u?=0 because A is a graded-
commutative algebra. If u has even degree, then w has odd degree, and deg(uz)qt
deg w. It follows from uA, = wA that u*=0.

Consider the Tate resolution (X, d) of k over A. By its construction X is a DGI -
algebra, and by Jézefiak and Gulliksen [6; 14, Theorem 4.7] X is minimal in the
sense that dX CI(A)X=A,X. Select xe X, such that dx=¢ in Xy=A. Let X=
X®4A. We claim that

Z(X)ycuX+dX). (1.9)

(As usual Z denotes cycles of a complex, Z;=2Z; for i=1, and Zy(X)=IA)=
d(X,).) Let x’ represent a cycle ®' in Z,(X); that is, x’ is in X and dx’=wy for
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some y in X. Then
dx’=wy=uty =u(dx)y = d(uxy) + uxdy

and since dy is in A, X and uA , = wA, we see that + uxdy =xwy, for some y; in X.
The exact same reasoning shows that xwy, = xuty, = x(dx)uy, = dux®y,) + xPudy,
since X is a DG/ -algebra. Continuing in this manner, we obtain

dx’'=d(uxy +uxPy + - +uxDy,_)),

the sum terminating when i(deg x)=deg x’. Since X is acyclic x’ is in X+ d(X),
which establishes (1.5).

We may now apply [20, Lemma 2.1], which can be proved in the graded setting
exactly as in the original ungraded case. The result is:

Lemma. Let A be a connected, graded-commutative k-algebra and U a DGI -
algebra such that

(a) each U, is a free A-module and Uy= A,

(b) dUC AU and dU,=A4,,

(c) there is a graded submodule M C A U such that M?*=0 and Z(U)C M+dU.
Then the minimal resolution of k has the form Y=U®4 T(F) where F is a free A-
module satisfying F® , k=H(U)[-1] and T(F) is the tensor algebra of F over
A

We apply the lemma with U=X and M=uX, concluding that X®; T(F) is a
minimal resolution of £ by free A-modules, where

(F,®iK)q=H, \(X),=Tor]_,,(4,k) forall p=2 and g=0.
It is immediate that

Pi=P,(1-z(Pd—1)7". (1.6)
Using the exact sequence

0—k[-glz=wA—=A—A—-0
together with Tor;,“q(ﬁ, k)sTor;,’_lq(wA, k) for p=1 and ¢g=0, and formula (1.3),

we obtain P —1=z8*1P,. Substitution into (1.6) yields the desired result. [J

The key step in our calculation of a Poincaré series of a local ring is Avramov’s
theorem, which shifts most of the work to calculating the Poincaré series of a Tor-
algebra, which often has a much simpler structure. To state his theorem we must
introduce the notion of small homomorphism. Many equivalent definitions can be
found in [3, Theorem 3.1].

Definition 1.5. A homomorphism f:R—S of local rings over k is small if the
induced map
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Sfe=Tor/(k, k) : Tor® (k, k) > TorS(k, k)

is injective. An ideal [ in R is small if R—R/I is a small homomorphism.

Example 1.6. (a) If R, m, k is a regular local ring over k and 7 is an ideal contained
in m?, then I is small; see [3, Example 3.11]. The underlying reason is that the
minimal (Tate) resolution of k over §=R/I contains the Koszul complex K* as an
S-module summand and K= KR®p S since 1< m?, where K® is the Koszul resolu-
tion of k over R.

(b) Let X denote a collection of indeterminates {X, ..., X,,}. An ideal I in Z[X]
is generically perfect of grade g if g=grade IR[X]=pdgx}R[X]/IR[X] for R equal
to Z or Z/pZ for some prime p. (The grade of an ideal J in a ring R is the length of
the longest R-sequence contained in J. ) Let I be a generically perfect ideal of Z[X]
contained in (X, ..., X,)* and suppose ¢ is a map of rings from Z[X] to a local
ring R, m with o(X;) in m for all i. If grade(JR)=grade I, then /R is a small ideal
in R by [3, Theorem 6.2].

We can now state Avramov’s theorem.

Theorem 1.7. (3, Corollary 3.3]. Let f: R—S be a small homomorphism of local
rings over k. If f gives S the structure of a finitely generated R-module and the
minimal R-free resolution of S has the structure of a DG-algebra, then
PRPs'=P;' where A=TorR(S, k). [

By Kustin and Miller [15] the hypothesis that the minimal R-free resolution of S
be a DG-algebra is satisfied if R is a Gorenstein local ring in which 2 is a unit and
S=R/I for I a grade four Gorenstein ideal. It also holds if I is a codimension g
‘Herzog ideal’, as explained in [17] and Proposition 2.4.

2. Poincaré series

If I'is a grade four Gorenstein ideal in a regular local ring R over k and char k #2,
then we shall prove (Corollary 2.3) that PRP1;/11 is a polynomial. The following
result of Kustin and Miller [16] is used to compute P,, as required in Theorem 1.7.

Theorem 2.i. Let R, m, k be a Gorenstein local ring in which 2 is a unit, and assume
k has square roots. Let I be a grade four Gorenstein ideal in R and
A=TorR(R/Lk). Then A is a Poincaré duality I-algebra. Moreover there are
bases {xy, ..., Xy} JOr AL {1y eees Y15 V15 ees Yn—1 3 Jor Ay, {24, ..., 2,} for A;, and
{w} for A, so that the multiplication A; X Ay_;—Ay=k is given by x;z;=0,w,
yiy;=08;w, y;y;=0=y/y;, and the other products in A are given by one of the
following cases:
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(A) The ideal I is generated by a regular sequence in which case A = E(®!_, kx)).

(B) All products in Ay A, and A A, are zero,

(c) All products in A, A and A, A, are zero except those indicated in the multi-
plication tables:

XX X i yoo»
x| 0 Yy = x| 0 23—
X l=y; 0 Y1 X |-z 0 <y
X315 -y O X301 22 -z 0
(D) There is an integer p such that x, . 1X;=y;, X;y/=2,,1, and X, yi=—z; for

I=<i=p, and all other products in A A, and A A, are zero. []

We assume for the remainder of this paper that the residue field k contains square
roots. (Since the Poincaré series Pg and Ppg,; are unchanged under flat extension
this condition can be obtained.) Let u(I) denote the minimal number of generators
of I

Theorem 2.2. Let R be a Gorenstein local ring over a field k with char k#2, and
let A=Tor®(S, k), where I is a grade four Gorenstein ideal in R with u(I)=n and
S=R/I. Then A has one of the forms (A), (B), (C), (D) as described above and
P! is respectively equal to

(A) (1-2%),

(B) 1-nz2-2(n-1z°—nz*+75,
(O) 1-n2—2n-57-(n—-6)z*+27° -z -7,
(D) 1-n2’—Qn-2-p)22+Qp+1-nz*+(p+ D°~7 .

If, further, I is small, then PyP5'=P;!,

Proof. The last statement is just Theorem 1.7. If A=E(@®)_, kx;), then by Ex-
ample 1.1(a), le =(1-2z%* If A has form (B), then Avramov [3, Proposition 9.6]
has shown that P;'=1+z—-zP5+z +2° Reading off the Betti numbers in a
minimal R-free resolution of S, we obtain P3=1+nz+2(n—1)z*+nz’+2z* and
formula (B) follows.

If A has form (C) we shall compute P; and then apply Theorem 1.4 to the Poin-
caré duality /"-algebra A. The following decomposition of A =A1/1, was suggested
to us by Avramov. Let A =E(@’,_, kx;) and A =A4/A;. Set

W=k[-11" @ k[-21""8@Dk[-3]""3% V=A,-1], and B=AKX V.
It is not difficult to see that A =B X W. By Theorems 1.4 and 1.2 we have

Pil=z20+P;' =20+ (1 -zP¥)P5".
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By formula (1.3) P} = QPy where Q= (n—3)z+ (2n— 8)z2 + (n—3)z>. Application
of Theorem 1.2 yields

Pil=Pg'+78—z0=(1-zPHP5' + 2° - z0.

Now V=A,[-1] and A, is the kernel of the augmentation 4 -k, so by (1.3) and
dimension shifting with Tor?(-, k) we obtain P:{:z(Pg —1)/z. Hence

Pi'=(1+2)P;'—z+2°—z0.

Finally we apply Theorem 1.4 and Example 1.1(a) to see that P’ =P, 7=
(1 -z2)>—2°; formula (C) follows directly.

Now suppose A has form (D) with dimA;A;=p. Let 4 be the subalgebra
klxy, ..., X, Piyoen ,y,',,z,,+ 1]. Clearly A is a Poincaré duality algebra of length three
in which all products of generators are zero except for those that give the pairing,
namely x;y/=z,,,. Let A=A/A, and A=A/A;. Evidently A4 is a trivial algebra,
and if we let C=k[x,,+1]/(xp+1)2 then B=A®, C is also a Poincaré duality I'-
algebra of length four, where B, =k(z,,1®x,, ). Since & is a field the minimal B-
free resolution of & is simply obtained by taking the tensor product of the respective
minimal free resolutions over A and C (use the standard Kiinneth formula); thus
Pp=P,P.. Let B=B/B, and M be the trivial B-module

k(=177 k[~ 2P" 2 P @k[-3]" 77

The key observation is that A = B x M, which the reader may easily verify. Then
by Theorems 1.4 and 1.2 we have

l
P;'=z0+P7’ =z6+<1—zP§4'>P§1
{

and P} =QPg where Q=(n~p—1)z+Qn—-2-2p)z*+(n—p—1)z> by using (1.3).
Two applications of Theorem 1.4 yield

Py'=2%+ P! ~20=P; -20=(P;' +2°)P¢' —20.

By Corollary 1.3 we have Pj‘ =1-pz*—pz° and Pz =1 — 7%, and formula (D) for
P! follows readily. [J

To relate PgPr);to P! we need I to be small. For R a regular local ring small-
ness just amounts to /€ m?. Should this condition fail, we have, in effect, an ideal
in lower codimension with well-known Poincaré series.

Corollary 2.3. Let R,m,k be a regular local ring over a field k of characteristic
different from two. Let I be a grade four Gorenstein ideal in R with u(I)=n.
If I is a complete intersection, then Pr(Pr,) '=(1+2)°(1—22)*"° where s=
dim,(7+m?)/m>. If I is not a complete intersection and is not contained in m?,
then

Pr(Pr,) ' =1+z—(n—1)z*-2(n— 1> —(n - Dz* + 22 + 25
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If I is contained in m?, then Px(Pg,;)~" is one of the polynomials listed in Theorem
2.2,

Proof. The first assertion is classical and can be found in [3, Proposition 4.2] or
[9, Corollary 3.4.3]; or one can specialize to the small case and use Example 1.1(a).
For the second situation choose x in I\ m? and let T be the image of I in the regular
local ring R=R/(x). Now R/I=R/I, so I'is a Gorenstein ideal of grade three which
is not a complete intersection. By Avramov [3, Theorem 8.2] or Wiebe [24, Satz.9]
we know that

Pr(Prp) ' =1-(n- 12— (n— 12>+ 2°.

The result follows since Pgr=(1+z)Pg. If, finally, /C m? then [ is small and
Theorem 2.2 applies. [J

As a further application of these techniques we calculate the Poincaré series of
an algebra R/I defined by a grade g ‘Herzog ideal’. Herzog and Steurich [12] have
already made this calculation, but they did not know that the minimal resolution
of R/I by free R-modules admits the structure of a DG-algebra. Consequently they
were obliged to make some rather nasty computations of Massey products. Our
proof is in essence the same, but the ugly details are masked by Avramov’s theorem.

Proposition 2.4. Let R,m, k be a local ring over k and let v,qa,, ..., a,, and x;; for
l<i<g, l<j<g~1 be elements of m. Let c; be (—1)'*! times the determinant of
the submatrix of X formed by deleting row i. Let I be the ideal generated by ¥, a;x;
Jorl=j<g—1 and c;+va; for | <i<g. If grade I=g, then I is small and

Pr(Pr,) ' =(1+2pf[(1 -2 1 —2].

Proof. The ideal 7 is generically perfect by [10, Corollary 4.5 and Example 3] or
[17], so by Example 1.6(b) the ideal 7 is small. An explicit DG-algebra structure on
the minimal R-free resolution F of R/I can be found in [17]. By Avramov’s theorem
Pr(Pr,)~'=Py! for A=Tor®(R/Lk)=F®gk. Let U=@?_| kz; and V=@*_ kx;
be vector spaces with basis elements z; and x; all of degree 1. From [17] we have

Ey(U) if =0,
E\(U)®E, (V) it i=1,

A=3 E(U)QEV)DE,_,(U) if 2<i<g-2,
E, \(V)®E, ,(U) ifi=g—1,
E, ,(U) it i=g,

and the multiplication A, xA;— A, ; is given by
Aj A; (1 =0iyjg AN

Ui | = Oiditt; + 0501
Aio Ay YSUVIIRE X C )V VIRVIV R I Ay T}
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It is easy to see that A; xA,_;—~A,=k is a perfect pairing for all i. Let E=E(U),
E=E/E, |, M=E,[-1], and W be the graded vector space B¢, E;(V).
There is no difficulty verifying that A = (E x M) x W, where Ex M acts trivially on
W. In particular the multiplication (Ex M); X (ExM);~>(ExM),, ; given by

A A AiNA; 1

0 0 |= o
Ai—vl ) lj—l Ai/\lj_1+(—1)ljlj/\li_1

agrees with the formula given above since (—l)j/li_1/\/1j=(—1)’j,1j/\,1,;1. We pro-
ceed as in part (C) of the proof of Theorem 2.2 (taking A =EX M):

Pil=z8"24 Pyl =222+ (1 - 2P} )P,

2 g\ i —1
=z8* +<1—ZEI<I,>Z'PA>PA

=28 (1 +28 - 1-2%)+ Py,
Pi'=(1-zP)P;' = (1-2(Pp—1)P;'

=—z+(1+2)Pg'

=—z+(Q+2)(P5' —z5).

The result follows since Pz'=(1—2z2)¢ 1. O

3. Golod homomorphisms

It is well-known [5, 19,23] that if f: R—S is a surjective map of local rings over
k, then there is a coefficient-wise inequality of Poincaré series

Ps<Pr(1-z(P3—1)7".

If equality holds we say f if a Golod map. Our main result in this section is that
every codimension four Gorenstein algebra which is a quotient of a regular local
ring can be reached from some regular local ring by a sequence of Golod maps.
Equivalent definitions and various related conditions are discussed in Avramov
[2,3], Levin [18,19], and Léfwall [21]. In particular, if #*(S) is the graded Lie
algebra associated to S (the homotopy Lie algebra of S, denoted n*(S), is de-
termined by the property that its universal enveloping algebra U(m*(S)) is iso-
morphic to Extg(k, k)), then f is a Golod map if and only if the sequence

0= L(W) = 1#(S) - m*(R) =0

is exact, where L(W) is the free graded Lie algebra on a vector space basis of
W= Tor’i (S, ¥)[—1]. For the interesting case when S is not a complete intersection,
Avramov [1] showed that if S is a codimension four Gorenstein algebra, then 7 *(S)
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contains a free Lie algebra on two generators. He used the then available primitive
knowledge of the multiplicative structure of A. We use [16] to give a description of
7*(S) as an extension of a finite Lie algebra n*(R) by a free Lie algebra L{W), thus
determining the graded vector space structure and most of the Lie algebra structure
of 7*(S).

One of the key examples of a Golod map, found already in [5, Theorem 3.7],
motivated Levin to introduce the concept. If R is an arbitrary local ring and b € m?
is not a zero-divisor, then R—R/(b) is a Golod homomorphism. It follows by induc-
tion that if =5, ..., b, is a regular sequence contained in m?, then Pg(Pg/p) ' =
(1 —2z%), as in Corollary 2.3. Roos [23] denotes by .«/% the class of rings that can
be reached from a regular local ring by a finite sequence of Golod surjections; we
call such rings Golod attached. We recall two of the many properties of rings in «/%.

The gth deviation, e,(S), of a local ring (S, k) is the number of variables of
degree ¢ adjoined in a minimal Tate resolution of k over S, and is also dim, 79(S).
(The classical deviations, as in [9], are ¢,=¢,,, for g=0.) It is an open question
([9, p. 154] or [1, Conjecture C5]) whether e,(S)>0 for all g=1 if S is not a com-
plete intersection. Gulliksen [8] further conjectured that e, (S)<e,,(S) for all odd
g>1. Avramov and Halperin [4] have proved the first conjecture for Gorenstein
rings of codimension four; Gulliksen [8] has proved his own conjecture for Gorens-
tein rings of codimension three. Recently, Jacobsson [13, Corollary 1] has proved
Gulliksen’s conjecture for all rings in the class .«/%; hence we shall see that it also
holds for Gorenstein rings of codimension four.

Roos [23, Theorem 5] has shown that if S is attached to a regular local
ring R,k by a sequence of s Golod surjections, then the finitistic global dimen-
sion of the Hopf algebra Extg(k, k) is at most s. Hence we shall see that
fin.gl.dim. Exts(k, k)<3 if S is a codimension four Gorenstein ring that is not a
complete intersection (and is equal to four if S is a complete intersection of
codimension four). All of these results follow from our main theorem:

Theorem 3.1. If R, m, k is a regular local ring over a field k of characteristic not two
and I is a grade four Gorenstein ideal in R, then there is a regular sequence a in |
so that the natural map R/(a)— R/I is a Golod map.

Proof. (Recall that we are assuming & has square roots; see Theorem 2.2.) The proof
is broken down according to the cases of Corollary 2.3. If 7 is generated by a regular
sequence, then the identity map R/I—R/I is the desired Golod map. If 7is not a
complete intersection and is not contained in m?2, then let a, be an element in 7\ m?
and let 7 be the image of 7 in the regular local ring R = R/(ay). Then R/I=R/I and
I is a grade three Gorenstein ideal which is not a complete intersection. By
Jacobsson [13, Appendix] there is an element @, in R such that &, is not a zero-
divisor in R and R/(a,)—R/I is Golod. Then ay,a; is a regular sequence and
R/(ay,a,)—R/Iis Golod. If I is not a complete intersection, but is contained in m?,
then 7 is a small and A = Tor?(R/I, k) has one of the forms (B), (C), (D) described
in Theorem 2.2.
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Case (B). We shall prove that there is a regular element a in  such that R/(a)—=R/I
is Golod. We let (Y,d) be the Koszul resolution of k over R and we set Y=
R/I®i Y. Then A=H(Y) and a basis for the reduced homology is given by the
equivalence classes of the cycles xi,..., X, in degree 15 ¥i,..., ¥y 1, ¥is.ces Yn_1 iD
degree 2; z,...,2, in degree 3; and w in degree 4. After possibly modifying x; by
a boundary, we may assume that there is a pre-image £, of x; in ¥ such that d, =a
is a regular element in R (and obviously a € [ since x; is a cycle in Y). In Y all pro-
ducts of the listed cycles are boundaries except that x;z; =d;w and y;y;=9;w. Let
R=R/(a) and Y=Y ®zR. The image %, of £, in Y is a cycle; if we adjoin a
variable S of degree two so that dS=%,, then ¥¢<S) is a minimal R-resolution of .

To prove that R—R/I is Golod it suffices to prove that Pz(Pg,) ‘=
1—z(P®-1), or equivalently,

P; P

P{§”=1—1<—R~i—1>. (3.2)
Z\Pg Py

Now a is a regular element in m?, so R— R is Golod and PzPg'=(1-2%)"". Using

Theorem 2.2 to rewrite Pz Pg.; we find that it suffices to prove

PH=1+(n-1)z+Q@n-22"+Qn-1)*+@n-2) ¥ 2’ 3.3)
i-4

where n=u(l).
The Poincaré series P,’;/ Tis obtained by studying the homology of Y(S)®zR/I=
Y(S). For each i >0 we select and fix cycles of Y(S) with the form described below:

x;S® +lower order terms in S, 2<j<n,

(-1 . (3.4)
z;S +os 2<j=n,
¥ 804, l<j=n-1, 3 s
{y}S““H---, l<jsn-1. -3)

It is not difficult to see that such cycles exist, and it is clear that
{1}, {x;|2=<j=n}, {ypy/l1=j=n-1},
{z;[1=i=n}U{x;SV|2=<j<n}

represent bases of H;(Y(S)) for i=0,1,2,3. For i=2 we will show that the 2n—2
cycles in (3.4) represent a basis of Hy;, ;(Y{S)) and the 2n—2 cycles in (3.5) repre-
sent a basis of H,;(Y{(S)). Once this has been accomplished, (3.3) follows
immediately.

First we demonstrate that we have a generating set for H(Y{S)); we induct on the
divided power degree in S. We shall write 1.0.t.(S) to denote ‘lower order terms in
S’ If =¢SSP +1.0.t.(S) is a cycle in Y{S), then & is a cycle in Y. Recall that
dSU*V=x,8 and d(z;S“*")=wSP. It is not difficult to select x, an R-linear
combination of cycles from (3.4) and (3.5), and an element ¢ of (1,z,)S**" so that
the leading term of 5 — [+ d@] is (u+ u’'z, +db)S® for some be Y and u,u’€R.
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Then
0=d(n - [x+d(g+bS)))

=(ux, —u'z;x)8 "V +(db)S "D+ 1o.t.(S)
=(ux;+u'w+db)S" V+1.0.t.(S)

for some &' e Y. Since { =2 it follows that the images & and &’ of u and u’ respective-
ly are zero in R/m and 5 — y differs by a boundary from a cycle that has degree less
than / in S. By induction this cycle differs by a boundary from a linear combination
of cycles from (3.4) and (3.5); thus so does 7.

To conclude the proof we show that the cycles of (3.4) and (3.5) represent linearly
independent classes in homology. Suppose that some R-linear combination of these
cycles is a boundary. Observe that if d(¥. 5;S)) =¢S% +1.0.1.(S) is a homogeneous
boundary element in Y{S), then (noting that degs;,,=degs;—2)

é:dsi+(—1)degs's,-+1xl,
(3.6)
0=ds;, |+ (—1)% %, x,.

By degree considerations there are just three cases to handle:

(@) If (X7 ,ax)S+1.0.t.(S) is a boundary, then ¥/ ,ax;=ds;+s;,x, and
s;,y must be in R/I. Since {x,,...,x,} is a basis of H,(Y), all @ must be zero.

) If (X7 e+ a/¥))SV +1.0.t.(S) is a boundary, then by (3.6) degs;,,=—1;
hence s, is a cycle of degree 1 and since A has form (B) the product s;,,x; is a
boundary. It follows that ¥ «;y,+a/y;is a boundary, and therefore @,=a/=0 for
all /.

(©) If (T7_, a;2)SV +1.0.t.(S) is a boundary, then by (3.6), degs;,,=0and s, .,
is in R/I. Since x, is not a boundary in Y we conclude that s;,, is in m. Thus
S;4,=dt for some tin Y}, and y=s;., +1x; is a cycle in Y,. Now we have ¥ o;7,=
ds; + (¥ — tx,)x,. Since Y is a DG-algebra, x? =0; and since A has form (B), yx, is
a boundary. Hence ¥ ¢,z; is a boundary and all @, are zero.

Case (C). We shall prove that there is a regular sequence a;,a, in [ so that the
natural map R/(a,,a,)—R/I is Golod. Both Y and Y are defined as in case (B)
above. The multiplication on Y is given by x;z; =J;w, y;y;=J;;w, and with the ex-
ception of the products listed below, all other products of cycles are boundaries.
Since we are lifting the multiplication from A = H(Y') there is some harmless indeter-
minancy which we denote ‘+b’, i.e. ‘plus a boundary’. Note, however, that since
Y is a DG-algebra xi2 =0 exactly.

X X2 X3 | i »2 Y3
X 0 y3+b  —y,+b Xy b Z3+b —z,+b
Xy | —y3+b 0 yi+b X, | —z3+b b Zy+b
x;| y+b  —y+b 0 x;| Z+b —-z;+Db b

For each i=1,2, let £; be a preimage of x; in ¥ and let d%; = a;. By modifying £,
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and £, by boundaries, if necessary, we may assume that a,,a, is a regular sequence
contained in /. Let R=R/(a;,a,) and Y=Y ®y R. We adjoin variables S, and S, of
degree two to kill %, and %,, the cycles that are the images of £; and £, in Y. Then
Y¢S, S,) is a minimal R-resolution of k.

To prove that R—R/I is Golod, it suffices to verify formula (3.2). Since a,, a, is
a regular sequence in m?, we have Pr(Pz)~'=(1 —z%)?; using Theorem 2.2 for
Pr(Pr,)”", we see that it suffices to prove

PE =14+ (n-2)z+Qn-5+(n-3) ¥ iz’ G.7)
i=3

where n=u(l).

The Poincaré series Pg/] is obtained by studying the homology H of
(S, S ®p (R/I)=Y(S,,S,). It is clear that {1}, {x;|3<j=<n} and
{y;l4<j=sn-1}J{y/|1=j=n—1} represent bases of H; for i=0,1,2.

Fix an integer k= 1. We claim that there are (n—3)(2k+ 1) cycles of form (3.9a)
and (n — 3)(2k) cycles of form (3.9b) that represent bases for H,, . | and H,, respec-
tively; from this (3.7) follows immediately. (Here + --- denotes terms of lower total
order in S; and S,.)

xSWsFE-Dy....  O=ask, 4<i=n,

{lel(a)sz(k_l—a)+---, O<a<k-1, 4<i=<n, (-92)
”ylsl(msé"*‘*”)ju---, l<a<k-1,

ySOSE D4 O0=a<k-1, 4=l=n-1,
yiSOSk-1=94 ... 0=a=<k-1, 4=i=n-1,
y{Sl(a)Sz(k—lfa)+y2lSl(a+1)Sz(k72fa)+'__, O<a<k-2, (3.9b)
s,

LyéSz(k‘”%r---.

It is not difficult to see that such cycles exist. To see that they generate H; for i =3
we induct on the polynomial degree in S; and S,. Let n= Zs:oﬂa be a cycle in
Y(Si, S,) with each 5, a (divided power) polynomial of degree @ in S| and S, with
coefficients in Y. In particular in the highest degree

me= ¥ 4508y

i+j=k

where each {; must be a cycle in Y. Recall that d(z; S{+VsYy = w88 (since
Y; =0 boundary elements in Y, are all zero). We can choose x, an R-linear com-
bination of cycles from (3.9a) and (3.9b), and an element g of

(13 x1’x3ay1,ay3,7 Zl) : (Sl’ SZ)(k+1)

so that the leading term of # —(x + do) is
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k—1

! ’ ” k,
EO (X, +u,y + uazz)Sf”)Sz( a)
“—

k

+ Y (Ut usxy+u, v+ dga)Sl(”)Sék_“)

a—-0

for some o, in Y and u,u,,u,,v,v0,,0, in R. Applying d to the cycle
n—y—do+ Zf:o QaSl(“)Sz(k’“)), and collecting coefficients of each S{“)Sz‘k_‘”, we
see that d4,=a,=a,=0,=0,=0,=0 for all a. Hence the cycle #—y differs by a
boundary from a cycle that is a polynomial of degree less than & in S, and S,; by
induction this cycle differs by a boundary from a linear combination of cycles of
(3.92) and (3.9b).

We conclude the argument by showing that the cycles of (3.9a) and (3.9b) repre-
sent linearly independent classes in homology. Suppose that some R-linear combina-
tion of them is a boundary. To show that all the coefficients are zero, we make the
following observation (also to be used in Case (D)). If s,, and { are homogeneous
elements in Y so that ¥ quSI(”)Sz(‘” is a homogeneous element in Y¢{S,, S,) and

(Y 5,,SPSPy =[SOS 1 ...
where the other terms have degree at most i+ in Sy and S,, then

{=ds;+ (- l)degs"(sm X1+ S 1%2),

O=ds;q,;+ (—l)degs”(smzjxl +Sic1jr1%2)s (3.10)

O=ds; ;o |+ (= D" E%(s; | 11X +5,,102%).

It suffices to handle three cases:

(a) Suppose (27:4a,x,)Sfi)S§j)+--- is a boundary. In the notation of (3.10),
Sqq=0 if c+d=i+j+2 by degree considerations, and similarly s, is in R if
c+d=i+j+1. Thus by (3.10) we see that {=Y a;x; is a boundary in ¥(S,, S,),
which implies @, =0 for /=4, ..., n.

(b) Suppose (Z,"Aa,z,)Sf”SZUW .-+ iIs a boundary. Now

4 ifc+d=i+}],
degs.;,=< 2 ifc+d=i+j+1,
0 ifc+d=i+j+2.

Since the cycles x| and x, represent the beginning of a basis of H,(Y), it follows
that 5.4 is in m for ¢ +d =i+ +2 and hence there exist ¢4 in Y, such that dt ., =s,,.
Of course (d?.,)x,=d(t4x;) for all /. By (3.10) both s, +ti X H 1%, and
Sij+1F i1 j+1 X1+ 12X, are cycles; thus they are in the R-submodule of Y; spann-
ed by dY; and { ¥, ..., Ys_1>¥1s---»Yn_1}. Consequently there exist R-linear com-
binations 7, and 7, of the y; and y; so that {=Y7 , ¢z, equals

(M =ty o X —Ligyjo X)X+ (2= by j 1 X — 14 2X2)Xx; + boundary

=11X| + 1,x, + boundary.
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Recall that xi2 =0and x;x, = —x,x; since Y is a DG-algebra, and each 7,Xx; is in the
R-submodule of Y; spanned by dY, and {z,z,,2;}. It follows that ;=0 for
I=4 .., 6§

g7

(c) Label the leading terms of the cycles of (3.9b) as follows:

Dek-2 - _
< :)’151( )Sz( ), ’:2:)’151(2)520( 3),-.-,51(71:)’151“ l),

and & to &y, _ 3 the other leading terms in some order. Suppose ¢~ a,& + -

is a boundary. Fix i and j with i+j=k—1. By (3.10) and degree considera-
tions s.4=0 if c+d=k+1 and s, is a 1-cycle if c+d=k. The coefficient { of
Sl(i)Sz(j) is equal to ds;—s;,1;X —5;j+1%. The product of two 1l-cycles is in
the R-submodule of Y, spanned by dY; and {y,,y,,¥;}; hence so is {. Since
{¥1s-esYn_1>1s---»¥Yn_1} Tepresents a basis for H,(Y) it follows that @ =0 for
k=l<2k(n-3). We are left with a boundary of form Ef:'l ¥ Sf”)Sék_l_"M—
L.o.t.(S;, S»). By (3.10) there is a system of equations

0=dSox—1—S1 k1% —SokX2s
0 Y1 =dS) g_2—S2k_2X1— 51 k-1 X2,

Y1 =dSy k3= S3k_3X1 — Sy k-2X2,

Qp Y\ =dSp_10— SkoX1 — Sk—11%2,

"

and each s, is a l-cycle if c+d=k. Thus s.;,=Y7 | u;(c,d)x;+do., for some
ui(c,d)eR and o,45€ Y, if c+d=k. All terms in the product s.;x, or s.;x, are
boundaries in Y, except possibly those involving x;Xx,, x,X;, or x,x;, which are
equivalent to the independent cycles y;, —y,, and y, respectively. The top equation
yields #3(1,k —1)=0; the next then yields @, =@;(1,k—1)=0 and #;(2,k—2)=0.
Proceeding inductively we obtain @ =#;(,,k—/)=0 and #(/+1,k—7-1)=0 for
each /.

Case (D). We shall prove that there is a regular sequence ap,a, in I so that the
natural map R/(ay,a;)=R/I is Golod. Both Y and Y are defined as above. For
convenience we reindex the basis elements of the reduced homology of Y as follows:
they are the equivalence classes of cycles xg,...,x,_; in degree 1;
ViseeesVn_1sX1s--s ¥, _, indegree 2; 2y, ..., z,_,; in degree 3, and win degree 4. The
multiplication on Y is given by x;z;=d;w, y,»yj':é,j w, and with the exception of
the products listed below all other products are boundaries:

XoX;=Y;+b,
X;yi=z0+b, 1<i=p
Xo¥i=—z;+b.

For each i=0,1, let £, be a preimage of x; in Y, with dx; =a;, chosen so that ag,a,
is a regular sequence in I. Let R=R/(ay,a,), and adjoin variables S, and S, of
degree two to kill the images of £, in ¥= Y®gR. Once again, to show that R—>R/I
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is Golod it suffices to verify (3.2), or equivalently in this case,
P =1+(n-2z+@2n-p-2z*+ ¥ litn-p—1D+p-1]z’ (3.11)
i=3

where n=u(I) and p=dim A?.

The Poincaré series Pg/ T'is obtained by studying the homology H of
Y¢Sy, SP®g (R/I) = Y{Sy, Syy. It is clear that {1},{x;|2<j=n-1}, and
{y;lp+1=j=n—1}U{y/|1=<j=n—1} represent bases of H, for i=0,1,2. Fix an
integer k=1. We claim that there are p—1+ 2k + 1)} (n—p—1) cycles of form
(3.12a) and p— 1+ Qk)(n—p—1) cycles of form (3.12b) that represent bases for
H, ., and H,;; from this (3.11) follows immediately.

xSH 4. 2=l=p,

xS@sk-D4... 0=ask, p+l=<i<n-—1, (3.12a)
7 SPOSE D4 0=ask-1, p+l=i=n-1,
y,Séa)Sl(kil_a)'f‘"', O<a=<k-1, p+l=<i=sn-1,
ylfséﬂ)sl(k—lfﬂ)_k...’ O<a<k-1, p+l<i<n-1, (3.12b)
ySE D4 2=/=p.

It is not difficult to see that such cycles exist, and to see that they generate H,; for
i =3 we shall induct on the polynomial degree in S, and S;. If # is a cycle in
Y(Sy, S;) with leading term of degree & in S, and S,, then we can find x, an R-
linear combination of cycles from (3.12a) and (3.12b), and an element o of

(laxl, ""Xpylly "'sy;/n ZO)(SO, Sl)(k+1)

so that the leading term of n— () +do) is
K 14
(uo)’l/ +dQO)Sl(k)+ Z < Z [ulax[ + ullayll] +uU,+ Uaz()+ dga>S(§a)Sl(kia)
a=1 =1

with w,, uy,, tt/,,0, in R and g, in Y. As in case (C) we apply ¢ to see that
d,=1,=i,=0,=0 for all / and a, and the argument concludes exactly as in case
(C). To verify that the cycles of (3.12) represent linearly independent classes in
homology we again adopt the notation of (3.10) and consider the three cases, which
are sufficient.

(@) If (T2 ax)SYS\V+ -+ is a boundary, then ¥, a;x; is a boundary in
Y{Sy, S)). Since {x,,...,x,_} represents a basis for H|, it follows that each @, is
zero.

(b) If (Z;:,,IH a,z,)Séi)S](j)+ -+ is a boundary, then (=Y «¢;z; has the form
ds;+Siy1,;Xo+5;j,1X, Where degs; ,;=degs;;,;=2. Hence { is in the R-
submodule of Y¥; spanned by d¥, and {z,...,2,}, and therefore each g, is zero.

(c) If ¢(SPSY 4+ is a boundary with (= L yi+ X, oy, then (=
dsiy—58i11;X9—8;;41%, Where degs;,,;=degs;;,,=1. Hence { is in the R-
submodule of Y spanned by d¥; and {y,,...,y,}, and therefore each @, and &, is
zero. [
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Let R be a regular local ring over a field £ and let I be a grade four Gorenstein
ideal in R. Then S=R/I is either a complete intersection or it is a Gorenstein local
ring of codimension three or four. If S is a complete intersection, most of its homo-
logical properties are known. The homotopy Lie algebra n*(S) is finite-dimensional
(since 7>3 (S)=0), the Ext-algebra is Noetherian; i.e. the A-dimension of Extg(k, k)
is zero (Roos [23]); also from [23] the finistic global dimension of Extg(k, k) is
equal to e,(S), which is at most four, and the Poincaré series P¥(z) is rational for
every finitely generated module M.

Theorem 3.1 provides much information for the case in which S is not a complete
intersection.

Corollary 3.2. Let R be a regular local ring over a field k not of characteristic two.
Let I be a grade four Gorenstein ideal in R such that S=R/I is not a complete in-
tersection. Then

(3] P§W (z) is rational for every finitely generated S-module M.

(ii) There is an exact sequence of graded Lie algebras

0—L(W)—>a*S)—n*(R)—~0

where L(W) is a free Lie algebra, dim, n'(R)=dim, n'(S)=e,(S), dim, n?(R)=1
or 2, and dim; n'(R)=0 for i=3.

(iii) e;(S)>0 for all i=1 and e,;(S)>e{(S) for all odd i>1.

(iv) The finistic global dimension of Extg(k, k) is at most three.

(v) The A-dimension of Extg(k, k) is one; i.e. the Ext-algebra is coherent.

Proof. Property (i) follows from a result of Levin (unpublished): if R is a complete
intersection and R—S is a Golod map, then PY(z) is rational for every finitely
generated module M. The Lie algebra definition (3.1) of a Golod map gives us (ii),
and (iii) follows from Jacobsson [13]. The last two statements follow from Roos
[23]1. O
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Note added in proof

In Theorem 2.2 and elsewhere, by inflation of R (see N. Bourbaki, Algébre Com-
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mutative, Chap. IX, 38-39) we may pass to a flat extension, for which the residue
field k has 1/5 and /-1, the only roots actually required. Since the Poincaré series
remains unchanged, we need only assume char & #2.
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